首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - MDH methanol dehydrogenase - ADH acohol dehydrogenase - PQQ pyrroloquinoline, quinone - DTT dithiothreitol - NBT nitrobluetetrazolium - PMS phenazine methosulphate - DCPIP dichlorophenol indophenol  相似文献   

2.
Abstract Using inocula from a variety of sources, mixed cultures of methanol-utilizing Bacillus strains were enriched readily at 55°C. Isolation of pure cultures was difficult; the six strains that were obtained eventually in pure culture all possessed the RuMP pathway, grew rapidly on methanol at temperatures up to 60° C, and were tolerant to very high methanol concentrations. An NAD-dependent alcohol dehydrogenase appeared to be involved in the initial oxidation of methanol.  相似文献   

3.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

4.
Acetobacter methanolicus MB58 can grow on methanol. Since this substrate exhibits to be energy deficient there must be a chance to oxidize methanol to CO2 merely for purpose of energy generation. For the assimilation of methanol the FBP variant of the RuMP pathway is used. Hence methanol can be oxidized cyclically via 6-phosphogluconate. Since Acetobacter methanolicus MB58 possesses all enzymes for a linear oxidation via formate the question arises which of both sequences is responsible for generation of the energy required. In order to clarify this the linear sequence was blocked by inhibiting the formate dehydrogenase with hypophosphite and by mutagenesis inducing mutants defective in formaldehyde or formate dehydrogenase. It has been shown that the linear dissimilatory sequence is indispensable for methylotrophic growth. Although the cyclic oxidation of formaldehyde to CO2 has not been influenced by hypophosphite and with mutants both the wild type and the formaldehyde dehydrogenase defect mutants cannot grown on methanol. The cyclic oxidation of formaldehyde does not seem to be coupled to a sufficient energy generation, probably it operates only detoxifying and provides reducing equivalents for syntheses. The regulation between assimilation and dissimilation of formaldehyde in Acetobacter methanolicus MB58 is discussed.Abbreviations ATP Adenosine-5-triphosphate - DCPIP 2,6-dichlorphenolindophenol - DW dry weight - ETP electron transport phosphorylation - FBP fructose-1,6-bisphosphate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PMS phenazine methosulfate - RuMP ribulose monophosphate - Ru5P ribulose-5-phosphate - SDS sodiumdodecylsulphate - TCA tricarboxylic acid - TYB toluylene blue Dedicated to Prof. Dr. Dr. S. M. Rapoport on occasion of his 75th birthday  相似文献   

5.
A facultative methylotrophic bacterium was isolated from enrichment cultures containing methylamine as the sole carbon source. It was tentatively identified as an Arthrobacter species. Extracts of cells grown on methylamine or ethylamine contained high levels of amine oxidase (E.C. 1.4.3.) activity. Glucose- or choline-grown cells lacked this enzyme. Oxidation of primary amines by the enzyme resulted in the formation of H2O2; as a consequence high levels of catalase were present in methylamine-and ethylamine-grown cells. The significance of catalase in vivo was demonstrated by addition of 20 mM aminotriazole (a catalase inhibitor) to exponentially growing cells. This completely blocked growth on methylamine whereas growth on glucose was hardly affected. Cytochemical studies showed that methylamine-dependent H2O2 production mainly occurred on invaginations of the cytoplasmic membrane. Assimilation of formaldehyde which is generated during methylamine oxidation was by the FBP variant of the RuMP cycle of formaldehyde fixation. The absence of NAD-dependent formaldehyde and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formal-dehyde via hexulose phosphate synthase. Enzyme profiles of the organism grown on various substrates suggested that the synthesis of amine oxidase, catalase and the enzymes of the RuMP cycle is not under coordinate control.  相似文献   

6.
Pseudomonas C can grow on methanol, formaldehyde, or formate as sole carbon source. It is proposed that the assimilation of carbon by Pseudomonas C grown on different C1 growth substrates proceeds via one of two metabolic pathways, the serine pathway or the allulose pathway (the ribose phosphate cycle of formaldehyde fixation). This contention is based on the distribution of two key enzymes, each of which appears to be specifically involved in one of the assimilation pathways, glycerate dehydrogenase (serine pathway) and hexose phosphate synthetase (allulose pathway). The assimilation of methanol in Pseudomonas C cells appears to occur via the allulose pathway, whereas the utilization of formaldehyde or formate in cells grown on formaldehyde or formate as sole carbon sources appears by the serine pathway. When methanol is present together with formaldehyde or formate in the growth medium, the formaldehyde or formate is utilized by the allulose pathway.  相似文献   

7.
8.
Extracts of Pseudomonas C grown on methanol as a sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts. The addition of D-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when D-ribulose 5-phosphate was present in the assay mixtures. The amount of radioactivity found in CO2, was 6;8-times higher when extracts of methanol-grown Pseudomonas C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate. These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

9.
The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host.  相似文献   

10.
The activity of enzymes involved in methanol oxidation and assimilation as well as the levels of formaldehyde and glutathione were determined during batch cultivation of Candida boidinii KD1 in a medium with methanol. The distribution of [14C]methanol between oxidative and biosynthetic processes in the yeast was analysed. Changes in the concentrations of formaldehyde and glutathione were found to correlate with the activity of formaldehyde dehydrogenase. The results indicate that an increase in the concentration of reduced glutathione (GSH) at the early logarithmic phase of the yeast growth stimulates formaldehyde oxidation via formate to carbon dioxide whereas a subsequent decrease in the concentration of GSH favours formaldehyde assimilation.  相似文献   

11.
Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram‐positive bacterium possesses a soluble NAD+‐dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label‐free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 ( http://proteomecentral.proteomexchange.org/dataset/PXD000637 , http://proteomecentral.proteomexchange.org/dataset/PXD000638 ).  相似文献   

12.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

13.
A number of bacterial strains have been isolated and investigated in our search for a promising organism in the production of single-cell protein from methanol. Strain L3 among these isolates was identified as an obligate methylotroph which grew only on methanol and formaldehyde as the sole sources of carbon and energy. The organism also grew well in batch and chemostat mixed-substrate cultures containing methanol, formaldehyde, and formate. Although formate was not utilized as a sole carbon and energy source, it was readily taken up and oxidized by either formaldehyde- or methanol-grown cells. The organism incorporated carbon by means of the ribulose monophosphate pathway when growing on either methanol, formaldehyde, or various mixtures of C1 compounds. Its C1-oxidation enzymes included phenazine methosulfate-linked methanol and formaldehyde dehydrogenase and a nicotinamide adenine dinucleotide-linked formate dehydrogenase. Identical inhibition by formaldehyde of the first two dehydrogenases suggested that they are actually the same enzyme. The organism had a rapid growth rate, a high cell yield in the chemostat, a high protein content, and a favorable amino acid distribution for use as a source of single-cell protein. Of special interest was the ability of the organism to utilize formaldehyde via the ribulose monophosphate cycle.  相似文献   

14.
A number of bacterial strains have been isolated and investigated in our search for a promising organism in the production of single-cell protein from methanol. Strain L3 among these isolates was identified as an obligate methylotroph which grew only on methanol and formaldehyde as the sole sources of carbon and energy. The organism also grew well in batch and chemostat mixed-substrate cultures containing methanol, formaldehyde, and formate. Although formate was not utilized as a sole carbon and energy source, it was readily taken up and oxidized by either formaldehyde- or methanol-grown cells. The organism incorporated carbon by means of the ribulose monophosphate pathway when growing on either methanol, formaldehyde, or various mixtures of C1 compounds. Its C1-oxidation enzymes included phenazine methosulfate-linked methanol and formaldehyde dehydrogenase and a nicotinamide adenine dinucleotide-linked formate dehydrogenase. Identical inhibition by formaldehyde of the first two dehydrogenases suggested that they are actually the same enzyme. The organism had a rapid growth rate, a high cell yield in the chemostat, a high protein content, and a favorable amino acid distribution for use as a source of single-cell protein. Of special interest was the ability of the organism to utilize formaldehyde via the ribulose monophosphate cycle.  相似文献   

15.
Methanol Metabolism in Pseudomonad C   总被引:5,自引:2,他引:3       下载免费PDF全文
Cell suspensions of pseudomonad C, a bacterium capable of growth on methanol as sole carbon source, were able to oxidize methanol, formaldehyde, and formate, although the rates of oxidation for the latter two compounds were much slower. The latter compounds also could not serve as sole carbon sources. Through the use of labeled compounds, it was shown that in the presence of methanol, formaldehyde, formate, and bicarbonate were incorporated into trichloroacetic acid-precipitable material. Hexose phosphate synthetase activity was found, indicating the assimilation of methanol via an allulose pathway. No hydroxypyruvate reductase activity was found, nor was any complex membrane structure observed. Such a combination of characteristics has been observed in an obligate methylotroph (Pseudomonas W1), but pseudomonad C can utilize a variety of non-methyl substrates.  相似文献   

16.
17.
The ribulose monophosphate (RuMP) pathway is one of the metabolic pathways for the synthesis of compounds containing carbon-carbon bonds from one-carbon units and is found in many methane- and methanol-utilizing bacteria, which are known as methylotrophs. The characteristic enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI), neither of which was thought to exist outside methylotrophs. However, the presumed yckG gene product (YckG) of Bacillus subtilis shows a primary structure similar to that of methylotroph HPS (F. Kunst et al., Nature 390:249-256, 1997). We have also investigated the sequence similarity between the yckF gene product (YckF) and methylotroph PHI (Y. Sakai, R. Mitsui, Y. Katayama, H. Yanase, and N. Kato, FEMS Microbiol. Lett. 176:125-130, 1999) and found that the yckG and yckF genes of B. subtilis express enzymatic activities of HPS and PHI, respectively. Both of these activities were concomitantly induced in B. subtilis by formaldehyde, with induction showing dependence on the yckH gene, but were not induced by methanol, formate, or methylamine. Disruption of either gene caused moderate sensitivity to formaldehyde, suggesting that these enzymes may act as a detoxification system for formaldehyde in B. subtilis. In conclusion, we found an active yckG (for HPS)-yckF (for PHI) gene structure (now named hxlA-hxlB) in a nonmethylotroph, B. subtilis, which inherently preserves the RuMP pathway.  相似文献   

18.
The oxidative metabolism of the carcinogen dimethylnitrosamine (DMN) was studied in mouse, rat, hamster and human respiratory tissue. [14C]DMN was purified by Dowex-1-bisulfite column chromatography to remove a contaminant (probably [14C]formaldehyde) interfering with the enzyme assay. Since formaldehyde and methyl carbonium ions - yielding methanol with water - are considered to be the primary products of DMN metabolism, tissue slices were assayed for the production of [14C]CO2 from 14C-labelled methanol, formaldehyde, formate, and DMN. Oxidation of formaldehyde to formate was not, but oxidation of formate to CO2 was very much rate-limiting. This rate-limiting step was circumvented by introducing quantitative chemical oxidation of formate to CO2 by mercury(II)chloride following the enzymic reaction. Since oxidation of methanol to CO2 proved to be insignificant, production of CO2 from DMN by lung tissue enzymes and HgCl2 may serve as a parameter for N-demethylating activity and the production of the suspected carcinogenically active methyl carbonium ions. The DMN-N-demethylating activities of lung tissue slices of two mouse strains with widely different susceptibilities to formation of lung adenomas by DMN differed significantly, but the difference seemed too small to explain the divergence in tumourigenic response. The enzymatic activities decreased in hamster bronchus, hamster trachea, hamster lung, GRS/A mouse lung, C3Hf/A mouse lung, human lung, Sprague-Dawley rat lung, in that order. The reported resistance of the hamster respiratory system to tumour induction by DMN may therefore not be due to poor DMN-N-demethylating capacity.  相似文献   

19.
Summary A new methylotrophic strain (T15), which employs the ribulose monophosphate (RuMP) cycle of formaldehyde assimilation, was isolated on the basis of high in vitro activities of formaldehyde and formate dehydrogenases (19 and 678 mU per mg protein, respectively). Serial subculturing of the strain in batch cultures, on 4 g/l CH3OH for 6 months, led to loss of substantial percentages of the NAD-linked formaldehyde (25%) and formate (98%) dehydrogenases. The activities of these two enzymes were partially recovered when cells were grown continuously at very low dilution rate (0.03 h–1). We found large variations (40 to 1000%) in the activities of other key enzymes of carbon-substrate oxidation (both linear and cyclic) and assimilation, in batch cultures with pure and mixed substrates, and in continuous cultures of different dilution rates. Key intracellular reaction rates, including those of the cyclic and linear substrate oxidation, were measured in vivo using a 14C-tracer technique in both continuous and batch cultures. The results indicate significant variations in these reaction rates, particularly those of linear and cyclic carbon oxidation. Overall, the cyclic oxidation appears to be employed to a larger (although not predominant) extent in strain T15 compared with another RuMP strain (L3) we have previously examined. T15 exhibits high biomass yields (up to 0.63 g cells per g CH3OH) and growth rates (up to 0.46 h–1) on CH3OH in batch cultures. CH3NH2 can also be utilized as a substrate. In continuous culture, T15 could be grown at dilution rates up to 0.36 h–1 with a corresponding biomass yield of 0.4. Examination of a large number of data on the biomass yields of strains T15 and L3 reveals that the large variations in yields derive from the variable branching of carbon flow between linear and cyclic oxidation and assimilation, rather than changes in the biosynthetic efficiency of carbon incorporation into biomass.  相似文献   

20.
Abstract A study was made of the enzymology of primary and intermediary pathways of C1 metabolism in three strains of non-motile obligately methylotrophic bacteria. Each uses a variant of the ribulosemonophosphate (RMP) cycle of formaldehyde fixation which involves the Entner-Doudoroff route for hexose-phosphate cleavage and transaldolase/transketolase mode of rearrangement. The organisms possess high levels of hexulose-phosphate synthase and NAD(P)-linked glucose-6-phosphate and 6-phosphogluconate dehydrogenases. In addition they contain small activities of dye-linked methanol and methylamine dehydrogenases, PMS- and NAD-linked formaldehyde and formate dehydrogenases. This indicates cyclic rather than direct oxidation of formaldehyde derived from methanol or methylamine. The tricarboxylic acid cycle is defective in 2-ketoglutarate dehydrogenase and the glyoxylate shunt is not operating because of the absence of malate synthase. Oxaloacetate is regenerated by (phosphoenol) pyruvate carboxylases. NH+ 4 is assimilated mainly by glutamate dehydrogenase. The results show metabolic similarities between motile and non-motile obligate methanol and methylamine utilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号