首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
S-Adenosylmethionine-dependent ribosomal RNA (rRNA) methylase has been purified approx. 90-fold from rat liver nuclei. The partially purified methylase catalyzes the methylation of base and ribose in hypomethylated nuclear rRNA prepared from the regenerating rat liver after treatment with ethionine and adenine. The enzyme has an apparent molecular weight of about 3 x 10(4) and a sedimentation coefficient of 3.0 S. The enzyme is optimally active at pH 9.5 and sensitive to p-chloromercuribenzoate. Thiol-protecting reagents, such as dithiothreitol, are necessary for its activity, and the enzyme requires no divalent cations for its full activity. This enzyme did not efficiently transfer the methyl group to nuclear rRNA from normal rat liver, compared with hypomethylated nuclear rRNA. Methyl groups were mainly incorporated into pre-rRNA larger than 28 S, and the extent of 2'-O-methylation of ribose by this enzyme was greater than that of base methylation in the hypomethylated rRNA. No other nucleic acids, including transfer RNA (tRNA) and microsomal RNA from normal as well as ethionine-treated rat livers, tRNA from Escherichia coli, yeast RNA, and DNA from rat liver and calf thymus, were significantly methylated by this methylase. These results suggest that partially purified rRNA methylase from rat liver nuclei incorporates methyl groups into hypomethylated pre-rRNA from S-adenosylmethionine.  相似文献   

3.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

4.
B L Bass  T R Cech 《Biochemistry》1986,25(16):4473-4477
The intervening sequence (IVS) of the Tetrahymena rRNA precursor catalyzes its own splicing. During splicing the 3'-hydroxyl of guanosine is ligated to the 5' terminus of the IVS. One catalytic strategy of the IVS RNA is to specifically bind its guanosine substrate. Deoxyguanosine (dG) and dideoxyguanosine (ddG) are found to be competitive inhibitors of self-splicing. Comparison of the kinetic parameters (Ki = 1.1 mM for dG; Ki = 5.4 mM for ddG; Km = 0.032 mM for guanosine) indicates that the ribose hydroxyls are necessary for optimal binding of guanosine to the RNA. dG is not a substrate for the reaction even at very high concentrations. Thus, in addition to aiding in binding, the 2'-hydroxyl is necessary for reaction of the 3'-hydroxyl. A second catalytic strategy of the IVS RNA is to enhance the reactivity of specific bonds. For example, the phosphodiester bond at the 3' splice site is extremely labile to hydrolysis. We find that dG and ddG, as well as 2'-O-methylguanosine and 3'-O-methylguanosine, reduce hydrolysis at the 3' splice site. These data are consistent with an RNA structure that brings the 5' and 3' splice sites proximal to the guanosine binding site.  相似文献   

5.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

6.
7.
8.
ErmC' is a methyltransferase that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics by catalyzing the methylation of 23S rRNA at a specific adenine residue (A-2085 in Bacillus subtilis; A-2058 in Escherichia coli). The gene for ErmC' was cloned and expressed to a high level in E. coli, and the protein was purified to virtual homogeneity. Studies of substrate requirements of ErmC' have shown that a 262-nucleotide RNA fragment within domain V of B. subtilis 23S rRNA can be utilized efficiently as a substrate for methylation at A-2085. Kinetic studies of the monomethylation reaction showed that the apparent Km of this 262-nucleotide RNA oligonucleotide was 26-fold greater than the value determined for full-size and domain V 23S rRNA. In addition, the Vmax for this fragment also rose sevenfold. A model of RNA-ErmC' interaction involving multiple binding sites is proposed from the kinetic data presented.  相似文献   

9.
Lalonde MS  Zuo Y  Zhang J  Gong X  Wu S  Malhotra A  Li Z 《RNA (New York, N.Y.)》2007,13(11):1957-1968
Mycoplasma genitalium, a small bacterium having minimal genome size, has only one identified exoribonuclease, RNase R (MgR). We have purified MgR to homogeneity, and compared its RNA degradative properties to those of its Escherichia coli homologs RNase R (EcR) and RNase II (EcII). MgR is active on a number of substrates including oligoribonucleotides, poly(A), rRNA, and precursors to tRNA. Unlike EcR, which degrades rRNA and pre-tRNA without formation of intermediate products, MgR appears sensitive to certain RNA structural features and forms specific products from these stable RNA substrates. The 3'-ends of two MgR degradation products of 23S rRNA were mapped by RT-PCR to positions 2499 and 2553, each being 1 nucleotide downstream of a 2'-O-methylation site. The sensitivity of MgR to ribose methylation is further demonstrated by the degradation patterns of 16S rRNA and a synthetic methylated oligoribonucleotide. Remarkably, MgR removes the 3'-trailer sequence from a pre-tRNA, generating product with the mature 3'-end more efficiently than EcII does. In contrast, EcR degrades this pre-tRNA without the formation of specific products. Our results suggest that MgR shares some properties of both EcR and EcII and can carry out a broad range of RNA processing and degradative functions.  相似文献   

10.
Methylation of the N1 position of nucleotide G745 in hairpin 35 of Escherichia coli 23 S ribosomal RNA (rRNA) is mediated by the methyltransferase enzyme RrmA. Lack of G745 methylation results in reduced rates of protein synthesis and growth. Addition of recombinant plasmid-encoded rrmA to an rrmA-deficient strain remedies these defects. Recombinant RrmA was purified and shown to retain its activity and specificity for 23 S rRNA in vitro. The recombinant enzyme was used to define the structures in the rRNA that are necessary for the methyltransferase reaction. Progressive truncation of the rRNA substrate shows that structures in stem-loops 33, 34 and 35 are required for methylation by RrmA. Multiple contacts between nucleotides in these stem-loops and RrmA were confirmed in footprinting experiments. No other RrmA contact was evident elsewhere in the rRNA. The RrmA contact sites on the rRNA are inaccessible in ribosomal particles and, consistent with this, 50 S subunits or 70 S ribosomes are not substrates for RrmA methylation. RrmA resembles the homologous methyltransferase TlrB (specific for nucleotide G748) as well as the Erm methyltransferases (nucleotide A2058), in that all these enzymes methylate their target nucleotides only in the free RNA. After assembly of the 50 S subunit, nucleotides G745, G748 and A2058 come to lie in close proximity lining the peptide exit channel at the site where macrolide, lincosamide and streptogramin B antibiotics bind.  相似文献   

11.
A novel method has been developed for the detection and study of tRNA-like moieties in viral RNAs. Tobacco mosaic virus RNA is an acceptable substrate for crude Escherichia coli ribothymidine-forming tRNA methyltransferase. Under optimum reaction conditions at least 85% of the methylation product is ribothymidine (rT). The reaction is essentially quantitative, 1 mol of rT being formed per mol of tobacco mosaic virus RNA. The optimum reaction conditions include the presence of 6.6 micrometers S-adenosyl-L-[Me-3H]methionine, 25 micrometers spermine, 25 mM ammonium acetate, and 50 mM HEPES, pH 8.0. Sequence analysis of (Me-3H)-labeled tobacco mosaic virus RNA shows that all of the methylation occurs at a single site and strongly suggests that this site is the 32nd residue from the 3'-end of tobacco mosaic virus RNA. This site closely resembles the normal position of rT in transfer RNA.  相似文献   

12.
Effect of polyamines on the methylation of adenine in 16S rRNA was examined using the purified methylating enzyme. When 23S core particles were used as substrate, the activity was stimulated by Mg2+, Ca2+ and monovalent cations. Even in the presence of optimal concentrations of Mg2+ and NH4+, the addition of 1 mM spermidine stimulated the methylation approximately 1.7-fold. When 30S ribosomal subunits were used as substrate, the rate of methylation was 20% of that of the methylation of 23S core particles. The activity was not influenced significantly by Mg2+, Ca2+ or monovalent cations. The addition of spermidine inhibited the methylation.  相似文献   

13.
The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2'-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2'-O position of the ribose.  相似文献   

14.
The iterative movement of the tRNA-mRNA complex through the ribosome is a hallmark of the elongation phase of protein synthesis. We used synthetic anticodon stem-loop analogs (ASL) of tRNA(Phe) to systematically identify ribose 2'-hydroxyl groups that are essential for binding and translocation from the ribosomal A site. Our results show that 2'-hydroxyl groups at positions 33, 35, and 36 in the A site ASL are important for translocation. Consistent with the view that the molecular basis of translocation may be similar in all organisms, the 2'-hydroxyl groups at positions 35 and 36 in the ASL interact with universally conserved bases G530 and A1493, respectively, in 16S rRNA. Furthermore, these interactions are also essential for the decoding process, indicating a functional relationship between decoding and translocation.  相似文献   

15.
The ermC 23 S rRNA methyltransferase converts a single adenine residue to N6,N6-dimethyladenine, both in vivo and in vitro. The ermC methyltransferase was demonstrated to produce both N6-mono and N6,N6-dimethylated adenine residues in Bacillus subtilis 23 S rRNA during the course of the reaction in vitro. An almost total conversion of monomethylated intermediates into dimethylated products was observed upon completion of the reaction. Data presented here demonstrate that the addition of the two methyl groups to each 23 S rRNA molecule takes place through a monomethylated intermediate and suggest that the enzyme dissociates from its RNA substrate between the two consecutive methylation reactions. The enzyme is able to utilize monomethylated RNA as substrate for the addition of a second methyl group with an efficiency approximately comparable to that obtained when unmethylated RNA was the initial substrate. Initial-rate data and inhibition studies suggest that the ermC methylase reaction involves a sequential mechanism occurring by two consecutive Random Bi Bi reactions.  相似文献   

16.
An approach using a new combination of protecting groups in RNA oligomer synthesis is proposed, in which 5'-hydroxyl group of ribose moiety is temporarily protected with the alkaline labile 9-fluorenylmethoxycarbonyl (Fmoc) group and the 2'-hydroxyl group is protected with the acid labile 1-ethoxyethyl (EE) group. The adoption of this method presented great selectivity in removing the 5'-hydroxyl protecting group and facilitated the RNA oligomer synthesis. A RNA pentamer was synthesized by the phosphotriester method in solution.  相似文献   

17.
Ribosomal protein methylase has been purified from Escherichia coli strain Q13 using methyl-deficient 50S subunits as substrates. The purified enzyme (or enzyme complex) which is devoid of rRNA methylating activity is quite stable and has a pH optimum around 8.0. The Km for S-adenosyl-L-methionine is 3.2 muM. The molecular weight of the enzyme is 3.1 X 10(4); minor methylating activity was also detected for protein peaks with molecular weights of 1.7 X 10(4) and 5.6 X 10(4). Protein L11 is the major protein methylated by the purified enzyme. Product analysis revealed the presence of N epislon-trimethyllysine, a methylated neutral amino acid(s) previously observed in protein L11 and N epislon-monomethyllysine. Free ribosomal proteins were much better substrates for the methylation, indicating that methylation of 50S ribosomal proteins can occur before the complete assembly of the 50S ribosomal subunit.  相似文献   

18.
An RNA-directed DNA polymerase was purified from baboon endogenous type-C virus by successive column chromatography on DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 8.0, a Mn2+ optimum of 1 mM, and a KCl optimum of 40 mM. The purified enzyme transcribes heteropolymeric regions of viral 60--70 S RNA isolated from different type-C viruses. The purified enzyme is immunologically related to a similarly purified polymerase from the cat endogenous type-C virus RD114.  相似文献   

19.
Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.  相似文献   

20.
Some physico-chemical properties, specificity and the character of action of rat liver nuclear ribonuclease are studied. The enzyme maximal activity was observed at pH 7.5--8.0, ionic strength 0.02--0.3, Mg2+ being necessary. Nuclease is an oligomer, having molecular weight is 160000--180000 daltons and containing separate associates. Purified enzyme is free of contaminating activities (polynucleotidephosphorylase, DNAse; 5'-nucleotidase, and alkaline phosphatases). It is shown to hydrolyse polyA and RNA for endonuclease type, degradation products being oligonucleotides terminating with 5'-phosphate and 3'-hydroxyl groups. RNAse hydrolyses all phosphodiester bonds in polynucleotides, developing no specificity to the nature of bases. Relative hydrolysis rate for different substrates decreased as follows: polyA greater than yeast RNA greater than polyC greater than polyU greater than 28S rRNA greater than greater than 18S rRNA greater than polyA-polyU. The enzyme may be classified as ribonucleate-5'-nucleotidehydrolase (EC 3.1.4.9.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号