首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
妊娠期间母胎界面存在着复杂的免疫调控关系,蜕膜及绒毛作为母体及胎儿的直接接触面,是发生免疫反应的重要部位。多种细胞因子如转化生长因子-β、肿瘤坏死因子-α及血管内皮细胞等具有营养细胞、调控滋养细胞侵入、免疫抑制、防止母胎排斥等多种功能,他们在正常妊娠的维持中起着重要的作用。目前转化生长因子-β2的作用已越来越受重视,本文将从转化生长因子-β2与妊娠期高血压疾病存在的关系作如下综述。  相似文献   

2.
妊娠期间母胎界面存在着复杂的免疫调控关系,蜕膜及绒毛作为母体及胎儿的直接接触面,是发生免疫反应的重要部位。多种细胞因子如转化生长因子-β、肿瘤坏死因子-α及血管内皮细胞等具有营养细胞、调控滋养细胞侵入、免疫抑制、防止母胎排斥等多种功能,他们在正常妊娠的维持中起着重要的作用。目前转化生长因子-β2的作用已越来越受重视,本文将从转化生长因子-β2与妊娠期高血压疾病存在的关系作如下综述。  相似文献   

3.
miRNA是一类非编码小RNA,经转录后调节靶基因的表达,影响细胞的功能。异常表达的miRNA可引起包括癌症在内的各种疾病的发生发展。miR-373通过参与病毒感染和炎症反应、细胞的增殖和凋亡、迁移和侵袭以及作为生物标志物评估临床肿瘤特征在肿瘤中发挥作用。miR-373在许多肿瘤中表达异常:一方面,其受上游调控因子作用表达异常,影响肿瘤细胞的功能;另一方面,异常表达的miR-373通过调控下游靶基因介导信号通路影响肿瘤细胞的功能。故miR-373可作为肿瘤早期诊断、基因治疗靶点或是临床预后监测指标。该文就miR-373在肿瘤中的功能作用和调节机制的相关研究进展作一综述。  相似文献   

4.
微小染色体维持蛋白2(minichromosome maintenance protein 2,MCM2)是微小染色体维持蛋白家族中的成员之一,在人类多种肿瘤组织中表达。MCM2在静止期细胞中不表达,而在突变、增殖的细胞中高度表达,可准确反映细胞的增殖能力,是评价细胞进入增殖期的特异指标,被视为癌前标志物。MCM2的过度表达与各种头颈部肿瘤的发生发展密切相关,有望作为各头颈肿瘤早期筛查和预后评估的临床指标。本文主要阐述MCM2的结构和功能,并对其与头颈部肿瘤的关系进行综述。  相似文献   

5.
白介素1受体样1蛋白ST2(interleukin 1 receptor-like 1)属于TOLL/IL-1受体超家族成员,主要功能型ST2L蛋白由胞内结构域、跨膜结构域和3个细胞外免疫球蛋白样结构域组成。IL-33/ST2信号通路参与机体多种炎性免疫反应,ST2在变态反应性疾病、自身免疫性疾病和心血管性疾病等中发挥了重要作用,近年来研究发现ST2在胃癌、乳腺癌、肝癌等多种肿瘤组织高表达,且与肿瘤的发生和侵袭转移密切相关,其主要机制与影响肿瘤免疫微环境及表达于肿瘤细胞直接影响细胞的生物学行为有关。本文主要就ST2的结构功能及与肿瘤等疾病的关系做一综述。  相似文献   

6.
FHL2是仅有四个半LIM结构域(FHL)蛋白家族的成员,目前在FHL蛋白家族中研究最为广泛。FHL2作为重要的衔接蛋白和支架蛋白,主要通过LIM结构域介导蛋白分子间的相互作用以实现其生物学功能。Fhl2基因在转录水平受多种肿瘤相关基因的调控,如p53,血清应答因子等。FHL2与恶性肿瘤的关系是近年来的研究热点,目前认为FHL2能够作为癌蛋白及抑癌蛋白通过不同机制广泛影响乳腺癌、胃肠道肿瘤、肝癌、前列腺癌等肿瘤的发生发展,并且在不同肿瘤中的表达具有组织特异性。本文就FHL2的结构特点、功能、转录调控及与肿瘤的关系几个方面展开综述,从而明确FHL2在不同肿瘤中所发挥的作用及其分子生物学机制将会为治疗相关肿瘤提供新的干预靶点。  相似文献   

7.
核转录因子Nrf2[nuclear factor erythroid 2(NFE2)related factor 2]是细胞内重要的调节因子。通过与Keap1(Kelch-like-ECH associated protein 1)蛋白质的相互作用,Nrf2可以调控下游基因转录,发挥抗氧化应激、维持细胞内稳态的功能,而Nrf2在肿瘤细胞中的表达与肿瘤的发生发展具有重要关系。Nrf2通过调节肿瘤细胞代谢模式调控细胞生长和增殖,近年来成为了细胞生物学和肿瘤生物学领域的研究热点之一。该文介绍了Nrf2对于活性氧分子产生与清除以及多种物质代谢途径的调控作用,着重阐明Nrf2的代谢调节作用对肿瘤细胞生长增殖的影响及其与肿瘤耐药的关系,旨在为今后的临床研究提供更多信息。  相似文献   

8.
肝癌细胞HepG2中p53调控miRNA-3661的生物信息分析与功能验证   总被引:1,自引:0,他引:1  
对已在前期实验中通过Dox诱导肝癌细胞HepG2 DNA损伤发现的受p53调控的hsa-miR-3661进行生物信息学分析,并通过分子生物学实验对其功能进行了验证,为miR-3661在肝肿瘤中的调控机制的研究提供理论基础。获取miR-3661结构与序列信息;预测靶基因,使用DAVID进行miRNA靶基因功能富集分析;分析miR-3661的p53结合位点,通过基因间的相互作用构建调控网络;进行细胞增殖实验验证miR-3661抑制肿瘤功能。结果表明,miR-3661序列保守,启动子区存在p53结合位点,暗示p53与hsa-miR-3661存在直接调控;预测靶基因1 009个,369个显著富集于细胞周期调控、细胞增殖、细胞凋亡等肿瘤相关生物学过程(P0.05),主要参与了癌症信号通路、MAPK信号通路与Erb B信号通路(P0.05);通过268组基因间的相互作用数据构建了p53、hsa-miR-3661和靶基因的调控网络,从系统生物学角度分析了参与多个肿瘤生物进程的关键靶基因;在实验中证实过表达miR-3661可以显著抑制肝癌细胞HepG2的增殖过程(P-value=0.001 46)。miR-3661受p53直接调控,其靶基因显著富集于多种肿瘤相关生物进程与信号通路,过表达miR-3661可显著抑制肝癌细胞增殖。  相似文献   

9.
赵楠  赵晓航  许杨 《生命科学》2014,(11):1207-1214
Survivin是凋亡抑制蛋白家族的一员,在抑制细胞凋亡、调控细胞周期、参与血管形成等方面发挥重要的生物学功能。Survivin在多种肿瘤组织中过量表达,与肿瘤不良预后和耐药性密切相关。Survivin作为一种潜在的肿瘤治疗靶点,其小分子抑制剂用于肿瘤治疗的研究为人们所关注。概述了Survivin的结构、功能及其在肿瘤组织中的特异性表达,综述了目前靶向Survivin的小分子抑制剂的研究进展。  相似文献   

10.
环状RNA(circular RNA,circRNA)是一类闭合环状的内源RNA分子,广泛存在于不同物种及多种人体细胞中,具有丰富性、稳定性和组织特异性等特点。人体细胞中的circRNA主要可分为外显子circRNA、环状内含子RNA和外显子-内含子circRNA等。与正常组织相比,circRNA在多种肿瘤组织中异常表达,并具有作为微小RNA(microRNA,miRNA)海绵调控miRNA、结合蛋白质、参与翻译等功能。虽然circRNA在肿瘤中异常表达的具体机制尚不明确,但其在食管鳞状细胞癌、胃癌、结直肠癌、肝细胞癌、神经胶质瘤等多种肿瘤发生、发展的分子通路中具有重要作用,并有望成为全新的肿瘤标志物和治疗靶点。circRNA领域的发展日新月异,本文根据最新研究报道,就circRNA的基本特征、异常表达机制、调控肿瘤的机制及其在多种肿瘤中发挥的作用作一综述。  相似文献   

11.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

12.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Dys-regulation of the insulin-like growth factor (IGF) system increases the risk of a number of malignancies. The aim of this study was to investigate the role of members of the IGF binding protein (IGFBP) superfamily in the development of oesophageal adenocarcinoma (EAC) and their possible use as markers of disease risk. Expression of IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 was assessed using Real-Time-polymerase chain reaction (PCR) and immunohistochemistry in oesophageal tissues from Barrett's oesophagus (BE) patients with and without associated EAC, and in control subjects. IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 mRNA levels were up-regulated in Barrett's (n=17) and tumour tissue of EAC patients (n=18) compared with normal tissue of control subjects without BE or EAC (n=18) (p<0.001). Over-expression of IGFBP-3 and IGFBP-10/CYR61 proteins was observed in Barrett's, dysplastic and tumour tissue of EAC cases (n=47 for IGFBP-10; n=39 for IGFBP-3) compared with adjacent normal epithelium (p<0.050). Notably, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 expression in Barrett's tissue of EAC cases (n=17) was significantly (p<0.001) higher than in Barrett's tissue of BE patients with no sign of progression to cancer (n=15). Overall, the results suggest that members of the IGFBP superfamily are up-regulated during oesophageal carcinogenesis and merit further investigation as markers of EAC risk.  相似文献   

14.
The insulin-like growth factors (IGFs) I and II are present in extracellular fluids associated with specific binding proteins (IGFBPs) that can modify their biologic actions. These studies were undertaken to determine which forms of IGFBP are secreted by endometrial carcinoma (HEC-1B) and breast carcinoma (MDA-231) cells, to characterize variables that control IGFBP secretion, and to study the effect of IGFBP-1 and IGFBP-2 on IGF-I stimulated cell proliferation. Secreted IGFBPs were identified by ligand blotting and IGFBP-1 was quantified using a specific radioimmunoassay (RIA). MDA-231 cell conditioned media (CM) contained four (43,000, 39,000, 30,000 and 24,000 Mr) forms of IGFBP, and HEC-1B cell CM contained three forms (39,000, 34,000 and 30,000 Mr). Immunoblotting showed that the 30,000 Mr form secreted by both cell types was IGFBP-1. Likewise the 34,000 Mr band in HEC-1B media reacted with IGFBP-2 antiserum and the 39,000 and 43,000 Mr bands reacted with IGFBP-3 antiserum. IGF-I stimulated the secretion of IGFBP-3 from both cell types and IGFBP-2 from HEC-1B cells but either decreased or caused no change in secretion of IGFBP-1 and a 24,000 Mr form. In contrast, insulin inhibited the secretion of IGFBP-1 but increased the secretion of the 24,000 Mr form. Compounds that elevate intracellular cAMP levels increased the secretion of IGFBP-3, IGFBP-1, and the 24,000 Mr form from both MDA-231 and HEC-1B cells. When sparse cultures of MDA-231 cells were used, addition of IGF-I caused a 24% increase in cell number after 48 hr. This mitogenic response was enhanced by the presence of recombinant human IGFBP-1 (45% increase in cell number, P less than 0.001). Bovine IGFBP-2 did not potentiate IGF-I stimulated cell proliferation. These findings show that two tumor cell lines secrete distinct forms of IGFBPs and that there is differential regulation of IGFBP secretion. At least one form secreted by both tumors may act as a positive autocrine modulator of IGF-I's growth stimulating actions.  相似文献   

15.
We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12–O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.  相似文献   

16.
Summary The current study was designed to examine the effects of muscle and fat stem cell coculture on the secretion of insulinlike growth factor (IGF)-I and -II and IGF binding proteins (IGFBP) by these cells. Two sheep satellite cell strains with negligible or high potential for differentiation (10A and 01, respectively) were placed in coculture with 3T3-L1 preadipocytes using a filter support to separate the two cell types. Media conditioned by the cells grown alone or in coculture were analyzed for IGFs by RIA or IGFBPs by ligand blotting. The numbers of satellite cells and preadipocytes declined throughout the 5-d culture period, although coculture slowed the 3T3-L1 decline but hastened the satellite cell decline. The satellite cell strains and 3T3-L1 cells secreted small amounts of IGF-I (≤2 ng/ml) and IGF-II (<10 ng/ml) over the 5-d culture period. Coculture did not increase the amount of IGF-I and -II in conditioned media. The lowly differentiating 10A cells secreted barely detectable amounts of the low molecular weight IGFBP-3 subunit (34 kDa), IGFBP-2 (28 kDa), and IGFBP-4 (18 kDa). Coculture of 10A and 3T3-L1 cells potentiated secretion of IGFBP-2 and-3. Strain 01, which readily differentiates, secreted high levels of both IGFBP-3 subunits (34 and 39 kDa) and IGFBP-2 (28 kDa), as well as significant amounts of the 18 kDa IGFBP-4. Coculture did not alter IGFBP secretion of 01 cells. This study showed that while IGF-I and -II levels in media conditioned by sheep satellite cell strains are low and relatively invariant, the intensity and complexity of IGFBP patterns increases with time in culture and with the potential for differentiation of the satellite cell strains. Coculture with preadipocytes appeared to potentiate IGFBP secretion while reducing satellite cell viability.  相似文献   

17.
Dys-regulation of the insulin-like growth factor (IGF) system increases the risk of a number of malignancies. The aim of this study was to investigate the role of members of the IGF binding protein (IGFBP) superfamily in the development of oesophageal adenocarcinoma (EAC) and their possible use as markers of disease risk. Expression of IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 was assessed using Real-Time-polymerase chain reaction (PCR) and immunohistochemistry in oesophageal tissues from Barrett's oesophagus (BE) patients with and without associated EAC, and in control subjects. IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 mRNA levels were up-regulated in Barrett's (n=17) and tumour tissue of EAC patients (n=18) compared with normal tissue of control subjects without BE or EAC (n=18) (p<0.001). Over-expression of IGFBP-3 and IGFBP-10/CYR61 proteins was observed in Barrett's, dysplastic and tumour tissue of EAC cases (n=47 for IGFBP-10; n=39 for IGFBP-3) compared with adjacent normal epithelium (p<0.050). Notably, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 expression in Barrett's tissue of EAC cases (n=17) was significantly (p<0.001) higher than in Barrett's tissue of BE patients with no sign of progression to cancer (n=15). Overall, the results suggest that members of the IGFBP superfamily are up-regulated during oesophageal carcinogenesis and merit further investigation as markers of EAC risk.  相似文献   

18.
19.
20.
The modulation of insulin-like growth factor-binding protein (IGFBP) secretion is an important variable affecting muscle cell metabolism, proliferation, and differentiation. We have previously shown that secretion of IGFBP-4 and IGFBP-5 by L6 and BC3H-1 muscle cells was stimulated by treatment with either insulin, IGF-I, or IGF-II. Herein, these cells were used to further identify mechanisms involved in controlling IGFBP secretion. Agents that elevate intracellular cAMP concentrations (dcAMP, forskolin, isoproterenol, and prostaglandin [PGE1]) increase secretion of IGFBP-4 and IGFBP-5 from L6 cells. Similar increases in IGFBP secretion were found by treatment with either insulin, IGF-I, or dcAMP. The effects of dcAMP and either insulin or IGF-I were additive, but the effects of insulin and IGF-I were not additive. These results suggest that insulin/IGF-I and dcAMP are acting via distinct mechanisms to stimulate IGFBP secretion. Indomethacin, which blocks endogenous prostaglandin synthesis, and progesterone, which decreases intracellular cAMP levels, decreased IGFBP-4 and IGFBP-5 secretion. IGFBP-5 secretion by BC3H-1 cells was increased by either insulin or IGF-I. Agents which elevate intracellular cAMP concentrations did not increase IGFBP-5 secretion. Additionally, these agents were not synergistic with either insulin or IGF-I. However, indomethacin and progesterone depressed IGFBP-5 secretion by BC3H-1 cells. In summary, there appear to be at least two intracellular signaling mechanisms controlling IGFBP-4 and IGFBP-5 secretion by L6 and BC3H-1 muscle cells. IGFBP secretion by L6 cells is stimulated by both insulin/IGF-I and cAMP-dependent pathways, whereas IGFBP-5 secretion by BC3H-1 cells is stimulated only by the insulin/IGF pathway. IGFBP secretion by both cell lines can be decreased by agents which depress cAMP levels. Our results suggest that two divergent but synergistic pathways modulate IGFBP production and these mechanisms can potentially modulate IGF activity during muscle cell proliferation and differentiation. J. Cell. Physiol. 174:293–300, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号