首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These experiments were designed to evaluate the role of cytokines in early T cell development within the thymus. By using a thymic organ culture model, we have studied the influence of high dose of IL-2 (10 to 1000 IU/ml) on the cell populations that are generated during 12 days starting from a thymic rudiment of 14-day-old mouse embryo. The IL-2 treatment resulted in the expansion of Thy-1+/-, CD4-, CD8-, CD3-, Fc gamma RII+, CD5 (Lyt-1)-, HSA-, Pgp- 1+, Mel-14- population. These cells had the morphology of large granular lymphocytes and displayed broad cytotoxic activity. In addition, IL-2-treated organ cultures had a dramatic decrease in CD4+CD8+ thymocytes, a marked reduction in TCR-alpha beta+ thymocytes--even more pronounced in the TCR-V beta 6+ and TCR-V beta 8+ thymocytes--and no significant changes in the number of TCR-gamma delta+ as compared to control organ cultures.  相似文献   

2.
Dendritic cells (DCs) are known to play a major role in the induction, maintenance, and regulation of immune responses. Recently, DCs have been described to be present at the feto-maternal interface in human decidua. However, only limited information is available about DC presence, phenotype, and--more importantly--function throughout gestation. Thus, we analyzed local (uterine) and systemic (blood) DCs in a murine model. DBA/2J mated CBA/J females with vaginal plugs were separated and killed on Gestation Days (GDs) 1.5, 3.5, 5.5, 6.5, 7.5, 8.5, 10.5, 13.5, 15.5, or 17.5. Frequency of uterine and blood CD11c+ DC, phenotype (coexpression of CD8alpha and major histocompatibility complex class II [MHC II] antigens), and presence of intracellular cytokines (interleukins 12 and 10) were determined by flow cytometry. The morphology of DC in the pregnant uterus was evaluated by immunohistochemistry. In uterus, the relative number of CD11c+ cells increased from GD 5.5, reaching a plateau on GD 9.5 until GD 17.5, while a transient peak of systemic CD11c+ cells was found on GD 8.5 and 10.5. The vast majority of uterine DCs were CD8alpha- and thus, belonged to the myeloid lineage. Interestingly, a significant peak of lymphoid DC was present on GD 1.5 and 5.5. Further, significantly more intracellular interleukin 10 than interleukin 12 was present in CD11c+ cells. Interestingly, mature DCs (MHC II+) were diminished from GD 5.5 to 8.5. Characterization of CD11c+ cell kinetics in uterus and blood reveals variation of phenotype during pregnancy, pointing toward an eminent immunoregulatory role of DCs throughout gestation at the feto-maternal interface.  相似文献   

3.
Development of thymic medulla was examined on consecutive gestational days (GD) in Wistar rats. Medullary thymic epithelial cells (TEC) were identified by immunocytochemical localisation of neuron-specific enolase (NSE). Organisation of thymic medullary architecture was determined by interaction of thymocytes with NSE-positive TEC, that led to formation of lymphoepithelial complexes (GD 19), in which the cells exhibited proliferative activity or traits of apoptosis. The studies indicated that differentiation events and organisation of thymic medulla require stage-specific interactions between TEC and thymocytes.  相似文献   

4.
Recent evidence indicates that the cells of the immune system and their large network of secretory products, or cytokines, play an active role in the ovary throughout the oestrous cycle. In the present study, immune cell populations (T and B lymphocytes, macrophages, granulocytes and eosinophils) and expression of major histocompatibility complex (MHC) class II were investigated in corpora lutea from mares in early (days 2-4), mid- (days 7-10) and late (days 12-14) dioestrus, the post-luteolytic phase (days 16-17) and early pregnancy. The number of T lymphocytes within the corpus luteum increased in the late luteal phase. CD4+ cells did not increase until day 16, whereas the number of CD8+ cells increased before functional luteolysis; an apparently selective luteal infiltration of CD8+ cells was observed. MHC class II expression by non-steroidogenic cells was increased in samples from days 16-17, as was the number of infiltrating macrophages. Flow cytometry revealed very low expression of MHC class II by large luteal cells at all stages of the oestrous cycle. In early pregnancy, the number of CD4+ and CD8+ cells and macrophages decreased, as did MHC class II expression, compared with mid-dioestrous samples. B cells were present in very small numbers in all samples examined. Eosinophils were similarly sparsely distributed and numbers decreased further in pregnancy. After exogenous PGF2 alpha administration, populations of CD4+ cells and non-specific esterase staining cells were significantly smaller than after natural luteolysis, whereas eosinophil numbers were increased compared with samples from days 16-17. However, the number of CD8+ and CD5+ cells and MHC class II expression were not significantly different from those observed after natural luteolysis. These findings indicate that populations of immune cells in the equine corpus luteum vary during its lifespan. The selective increase in CD8+ cells before functional luteolysis indicates that they have a physiological role in the regression of the corpus luteum.  相似文献   

5.
To define early stages of T cell maturation during human fetal thymic development, we have used mAb reactive with CD2, CD3, and TCR molecules in indirect immunofluorescence assays on a series of early human fetal thymic specimens. Using a technique of quantitating the relative proportions of fluorescent-positive cells present in tissue sections, we found at 8.5 wk of gestational age after arrival of CD7+ T cell precursors into the thymic rudiment, 60% of thymic CD7+ cells were CD2+, 4% were CD3+ and none was TCR-delta+ or TCR beta+. Moreover, cells reactive with anti-CD2 antibodies against T11(2) and T11(3) epitopes of CD2 as well as thymic stromal cells expressing the CD2 ligand, lymphocyte function associated Ag-3, were also present at 8.5 wk. From 9.5 wk to birth TCR beta+ cells increased to include greater than 90% of all CD7+ cells while TCR-delta+ cells fell from a peak of 11% of CD7+ cells at 9.5 wk to 1% of CD7+ cells at birth. These data suggest that epitopes of CD2 molecules are expressed early on during fetal thymic development. Moreover, these data suggest that CD7+, CD2+, cytoplasmic CD3+ T cell precursors in man give rise to both TCR-delta+ T cells as well as to T cells expressing TCR-alpha beta.  相似文献   

6.
We investigated first stages of thymic medulla organisation in foetuses of Wistar strain rats. between 13th and 17th days of foetal life (GD). Medullary cells were identified by immunocytochemical localisation of neuron-specific enolase (NSE) as well as by traits of ultrastructure. The first thymic medullary precursor cells which were reactive for NSE were at first spread all over the thymic primordium. In the period of thymus colonisation by lymphoid cells, the following stages were distinguished in medulla organisation: (1) migration of NSE+ cells to the central portion of the thymus (GD 14-15), (2) small medullary epithelial patches, distributed within the thymus (GD 16), and (3) expansion of medullary patches into medullary compartment (GD 17). At the second and third stages of the medulla organisation, an increase in the number of NSE+ cells, followed by differentiation of their ultrastructure and increase in their biological activity were observed. We conclude that formation of medullary architectural pattern is controlled by interactions between maturing epithelial cells and developing lymphoid cells and by angiogenesis in the region.  相似文献   

7.
Whether thymic dendritic cells (DC) are phenotypically and functionally distinct from the monocyte lineage DC is an important question. Human thymic progenitors differentiate into T, NK, and DC. The latter induce clonal deletion of autoreactive thymocytes and therefore might be different from their monocyte-derived counterparts. The cytokines needed for the differentiation of DC from thymic progenitors were also questioned, particularly the need for GM-CSF. We show that various cytokine combinations with or without GM-CSF generated DC from CD34+CD1a- but not from CD34+CD1a+ thymocytes. CD34+ thymic cells generated far fewer DC than their counterparts from the cord blood. The requirement for IL-7 was strict whereas GM-CSF was dispensable but nonetheless improved the yield of DC. CD14+ monocytic intermediates were not detected in these cultures unless macrophage-CSF (M-CSF) was added. Cultures in M-CSF generated CD14-CD1a+ DC precursors but also CD14+CD1a- cells. When sorted and recultured in GM-CSF, CD14+ cells down-regulated CD14 and up-regulated CD1a. TNF-alpha accelerated the differentiation of progenitors into DC and augmented MHC class II transport to the membrane, resulting in improved capacity to induce MLR. The trafficking of MHC class II molecules was studied by metabolic labeling and immunoprecipitation. MHC class II molecules were transported to the membrane in association with invariant chain isoforms in CD14+ (monocyte)-derived and in CD1a+ thymic-derived DC but not in monocytes. Thus, thymic progenitors can differentiate into DC along a preferential CD1a+ pathway but have conserved a CD14+ maturation capacity under M-CSF. Finally, CD1a+-derived thymic DC and monocyte-derived DC share very close Ag-processing machinery.  相似文献   

8.
The myelopoietic inducing potential of mouse thymic stromal cells   总被引:1,自引:0,他引:1  
The thymus has generally been considered as being solely involved in T cell maturation. In this study we have demonstrated that mouse thymic stroma can also support myelopoiesis. Bone marrow from mice treated with 5-fluorouracil was depleted of cells expressing Mac-1, CD4, and CD8 and incubated on lymphocyte-free monolayer cultures of adherent thymic stromal cells. After 7 days there was a marked increase in nonadherent cells, the majority of which were Mac-1+, FcR+, and HSA+. These proliferating bone marrow cells also expressed markers (MTS 17 and MTS 37) found on thymic stromal cells. Such cells were not found in thymic cultures alone, in bone marrow cultured alone, or on control adherent cell monolayers. Supernatants from the cultured thymic stroma, however, were able to induce these cell types in the bone marrow precursor population. Incubation of normal thymocytes with a monolayer of these in vitro cultivated Mac-1+, MTS 17+, MTS 37+ myeloid cells leads to selective phagocytosis of CD4+ CD8+ cells. Hence, this study demonstrates that the thymic adherent cells can induce myelopoiesis in bone marrow-derived precursor cells and provide a form of self-renewal for at least one population of thymic stromal cells. Furthermore, these induced cells are capable of selective phagocytosis of CD4+ CD8+ thymocytes and may provide one mechanism for the selective removal of such cells from the thymus.  相似文献   

9.
Thymocyte subpopulations during early fetal development in sheep   总被引:3,自引:0,他引:3  
Phenotypic analysis of thymocytes during fetal development may identify subpopulations which are either absent or difficult to detect in postnatal thymus. A panel of monoclonal antibodies specific for sheep lymphocyte antigens (SBU-T1, -T4, -T8, -T6) was used to identify thymocyte subpopulations in postnatal and fetal sheep. Thymuses were analyzed by two-color immunofluorescence and flow cytometry or by immunohistology. Two-color immunofluorescent staining of postnatal sheep thymus with anti-SBU-T4 and anti-SBU-T8 revealed four relatively distinct subpopulations with particular localizations: a) SBU-T4-T8-, predominantly outer cortex (12%); b) SBU-T4+T8+, inner cortex (74%); c) SBU-T4+T8-, medulla (10%), and d) SBU-T4-T8+, medulla (4%). One- and two-color immunofluorescent analysis of cells from early fetal thymuses demonstrated the appearance of SBU-T8+ cells well before SBU-T4+ cells. Immunohistologic staining of fetal sheep thymus at various stages of gestation (term = 150 days) revealed that lymphoid cells and MHC class II-positive dendritic cells first appeared at 35 days, at which stage the thymic epithelium was weakly positive for class I MHC antigens but negative for class II MHC antigens. The earliest lymphocyte antigens detectable on fetal sheep thymocytes were SBU-LCA and SBU-T1. By 40 days, the antigens SBU-T6, SBU-T4, and SBU-T8 were detectable on a small number of thymocytes; SBU-T8 preceded SBU-T4, and the number of SBU-T8+ thymocytes always exceeded the number of SBU-T4+ thymocytes throughout early gestation. At 50 days, a thymic medulla appeared and thereafter grew rapidly in size. Immunoperoxidase staining of serial sections of the fetal neck revealed cortical-type thymocytes outside the thymus from 40 days onward, before the appearance of a thymic medulla. However, by 60 days, only medullary-type thymocytes were observed either extrathymically or within the interlobular septa of the thymus, indicating that only thymocytes with a medullary phenotype leave the thymus from this stage of gestation.  相似文献   

10.
The aim of this study was to investigate the distribution of CD2+, CD4+, CD8+ lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4+/-0.7 (mean+/-S.D.) were used. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus (day 17, n=3), prooestrus (day 19, n=3), oestrus (day 1, n=3), early dioestrus (day 4, n=3) and dioestrus (days 11-12, n=3), were stored in a freezer at -70 degrees C until analysed by immunohistochemistry with an avidin-biotin peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface and glandular epithelium as well as connective tissue layers in subepithelial and glandular areas were examined by light microscopy.For the T lymphocyte subpopulations, all oestrous cycle stages and different tissue layers taken together, the most commonly observed cell type was CD2+ cells. The largest number of CD2+ cells within the surface and glandular epithelium were observed at oestrus and early dioestrus. In the surface epithelium, a larger number of CD8+ cells compared with CD4+ cells were observed and no CD4+ cells were found within the glandular epithelium at any stage of the oestrous cycle.In the subepithelial and glandular connective tissue layers, during the oestrus cycle stages, a larger number of CD4+ cells compared with CD8+ cells were found.Endothelial cells in the connective tissue generally expressed MHC class II. However, no obvious differences between oestrous cycle stages were observed. For other cells than endothelial cells, the result was as follows. In the surface epithelium, a large number of MHC class II expressing cells was observed at oestrus compared with the other stages. No MHC class II expressing cells were found at late dioestrus and dioestrus. MHC class II expressing cells were also found in the glandular epithelium, and in the subepithelial and glandular connective tissue layers during all oestrous cycle stages but with no significant differences between stages.In conclusion, the present study showed a variation in the distribution of T lymphocyte subpopulations (CD2+, CD4+ and CD8+) and MHC class II expressing cells in the sow endometrium during different stages of the oestrous cycle. Also a variation between different tissue layers was found. It is suggested that helper and cytotoxic function of the immune system have primary locations in different tissue layers of the endometrium.  相似文献   

11.
Despite considerable research, the mechanisms by which HIV disrupts thymic function remain controversial. We have described the phenotypic changes that occur in the thymus of SIV-infected macaques during acute SIV infection. In this study, we analyzed the effects of SIV infection on apoptotic pathways in thymic tissue from newborn macaques infected with SIV. Thymocyte apoptosis was accompanied by a modest increase in surface Fas expression, a profound decrease in the frequency of bcl-2-positive cells, as well as the amount of bcl-2 per cell. With control of viral replication, levels of bcl-2 and Fas returned to baseline together with a return to basal levels of apoptosis. In the thymus, SIV infection resulted in depletion of CD4+CD8+ thymocytes, an increase in apoptosis of thymocytes, and a down-regulation of MHC class I molecules. These changes peaked 14-21 days after infection at or just after peak viremia. This data further suggests disruption of the antiapoptotic pathway regulated by bcl-2 plays a critical role in SIV-induced apoptosis of thymocytes.  相似文献   

12.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

13.
Culture of human thymocytes in interleukin 2 (IL 2) results in the generation of cytotoxic T lymphocytes (CTL) that kill tumor cell targets without major histocompatibility complex (MHC) restriction. Thymic non-MHC restricted CTL expressed Leu-19 antigen, but were generated from thymic precursor cells that lacked expression of Leu-19. In contrast, short term culture in Il 2 of peripheral blood lymphocytes depleted of Leu-19+ lymphocytes did not result in the generation of cytotoxic activity. IL 2 was necessary and sufficient for the generation of cytotoxic thymocytes and induction of Leu-19 antigen expression. Thymic non-MHC restricted CTL were generated from precursor cells expressing CD1, an antigen present on the majority of thymocytes. Furthermore, cytotoxic activity was detected in IL 2 cultured thymocyte populations with an "immature" antigenic phenotype, i.e. CD1+ and CD4+, CD8+. Upon subsequent culture, thymic non-MHC restricted CTL lost expression of CD1, and developed an antigenic phenotype similar to peripheral blood non-MHC-restricted CTL, suggesting that peripheral non-MHC-restricted CTL may originate from these thymic precursors.  相似文献   

14.
The study attempted to define characteristics of thymic epithelial cells within rat thymus based on the expression of neuroendocrine markers. Using an immunohistochemical approach, the following markers were localised: protein gene product 9.5 (PGP 9.5), neuron-specific enolase (NSE) and chromogranin A (ChA). It was shown that cells displaying immunostaining typical for individual markers reside in distinct regions of the thymus and represent subtypes within various populations of thymic epithelial cells. An immunoreactivity for PGP 9.5 was found exclusively in a subtype of cortical epithelial cells, located mostly within the inner zone of the cortex. On the other hand, NSE represented a marker of most epithelial cells located in the medulla. Few such cells which were negative for NSE proved positive for ChA. Among the cells with a strong reaction for NSE some cells also manifested a positive reaction for ChA. While the pattern of neuroendocrine marker distribution may reflect functional properties of thymic epithelial cells which might be different within distinct areas of the thymus, the differential expression of individual markers seems to reflect biological activity of the cells and/or distinct stages of their differentiation.  相似文献   

15.
Positive selection of CD4+ T cells requires that the TCR of a developing thymocyte interact with self MHC class II molecules on thymic cortical epithelium. In contrast, clonal deletion is mediated by dendritic cells and medullary epithelium. We previously generated K14 mice expressing MHC class II only on thymic cortical epithelium. K14 CD4+ T cells were positively, but not negatively, selected and had significant in vitro autoreactivity. Here, we examine the function of these autoreactive CD4+ T cells in more detail. Analysis of a series of K14-derived T hybrids demonstrated that the autoreactive population of CD4+ T cells is phenotypically and functionally diverse. Purified K14 CD4+ T cells transferred into lethally irradiated wild-type B6 mice cause acute graft vs host disease with bone marrow failure. Further, these autoreactive CD4+ T cells cause hypergammaglobulinemia and the production of autoantibodies when transferred into unirradiated wild-type hosts. Thus, positive selection by normal thymic cortical epithelial cells, unopposed by negative selection, produces polyclonal CD4+ T cells that are pathologic.  相似文献   

16.
NK cells recognize and kill tumor cells and normal cells, and these play an important role in immune defense in cancer, infectious disease, and autoimmunity. NK killing is regulated by positive or negative signals derived from the interaction of surface receptors with ligands on the target cells. However, the mechanisms controlling the proliferation and maintenance of NK cells in normal human individuals are less clearly defined. In this study, using an entirely autologous system, we demonstrate that human peripheral blood CD3-CD56+, killer cell-inhibitory receptor (KIR)-expressing cells proliferate and expand in response to LPS. These responses are enhanced in the presence of anti-IL-10 receptor-blocking Abs or on the removal of CD14+ cells from the cultures. This enhancement is also reflected in substantial increases in cytolytic activity and IFN-gamma production. The negative effect of CD14+ cells may also be IL-10 mediated, IL-10 being lost from the culture supernatants of CD14-depleted PBMC and rIL-10 reversing the effect of this depletion. On the other hand, mRNA for the p35 and p40 subunits of IL-12 is still induced in CD14-depleted cultures. The expansion of CD3-CD56+ cells was also inhibited by CTLA4-Ig, indicating a role for CD80/86. B lymphocytes were not required for the expansion of CD3-CD56+ cells, whereas removal of MHC class II+ cells from CD14-depleted cultures resulted in a complete abrogation of these responses. Expansion of CD3-CD56+ cells was reconstituted in MHC class II-depleted cell cultures by adding back monocyte-derived dendritic cells. These results indicate that the responses of CD3-CD56+ NK cells to LPS may be driven by a MHC class II+ B7+ CD14- peripheral population, most likely blood dendritic cells.  相似文献   

17.
18.
《Cytotherapy》2020,22(3):158-165
We analyzed data relative to cell content in 88 consecutive patients receiving HLA haploidentical bone marrow (BM) transplants with post-transplantation cyclophosphamide (PT-CY). Median age was 54.5 (range, 17–72); diagnoses were acute leukemia (n = 46), lymphoproliferative disorders (n = 24), myelofibrosis (n = 11) and myelodysplastic syndromes (n = 5). Total nucleated cell (TNC) and CD34+, CD3+, CD4+ and CD8+ cell doses were stratified as higher than first, second and third quartile and the dose effect on various clinical outcomes was assessed. Median time to engraftment was 17 days for neutrophils and 24 days for platelets. To receive a dose of TNC ≥3.2 x 106/kg or CD34+ cells ≥2.7 x 106/kg significantly shortened the time to neutrophil and platelet engraftment and reduced the blood product requirements in the 30-day period after transplantation. Overall, TNC and CD34+ cell doses had no effect on acute graft-versus-host disease (GVHD) incidence, whereas patients receiving higher CD3+ and CD8+ cell doses seemed to have less chronic GVHD. No effect on non-relapse mortality, progression-free survival and overall survival was observed at different cell dose thresholds. These data suggest that in HLA haploidentical BM transplant with PT-CY, appropriate cell doses are relevant to the engraftment. The association between low CD3+/CD8+ cells and chronic GVHD deserves further investigation.  相似文献   

19.
Adoptive transfer of adjuvant-induced arthritis was used in this study to examine local macrophages and dendritic cells (DCs) during T cell-mediated synovial inflammation. We studied the influx of CD11b+CD11c+ putative myeloid DCs and other non-lymphoid CD45+ cells into synovium-rich tissues (SRTs) of the affected hind paws in response to a pulse of autoreactive thoracic duct cells. Cells were prepared from the SRTs using a collagenase perfusion-digestion technique, thus allowing enumeration and phenotypic analysis by flow cytometry. Numbers of CD45+ cells increased during the first 6 days, with increases in CD45+MHC (major histocompatibility complex) II+ monocyte-like cells from as early as day 3 after transfer. In contrast, typical MHC II(-) monocytes, mainly of the CD4(-) subset, did not increase until 12 to 14 days after cell transfer, coinciding with the main influx of polymorphonuclear cells. By day 14, CD45+MHC IIhi cells constituted approximately half of all CD45+ cells in SRT. Most of the MHC IIhi cells expressed CD11c and CD11b and represented putative myeloid DCs, whereas only approximately 20% were CD163+ macrophages. Less than 5% of the MHC IIhi cells in inflamed SRT were CD11b(-), setting a maximum for any influx of plasmacytoid DCs. Of the putative myeloid DCs, a third expressed CD4 and both the CD4+ and the CD4(-) subsets expressed the co-stimulatory molecule CD172a. Early accumulation of MHC IIhiCD11c+ monocyte-like cells during the early phase of T cell-mediated inflammation, relative to typical MHC II(-) blood monocytes, suggests that recruited monocytes differentiate rapidly toward the DC lineage at this stage in the disease process. However, it is possible also that the MHC IIhiCD11c+ cells originate from a specific subset of DC-like circulating mononuclear cells.  相似文献   

20.
Ontogeny of T cell receptors in the chicken thymus   总被引:7,自引:0,他引:7  
A panel of murine mAb against chicken TCR and associated molecules was used to study the ontogeny of T cells. The intrathymic maturation of the TCR-gamma delta, (TCR-1) and TCR-alpha beta (TCR-2) sublineages was the focus of these studies employing immunoperoxidase staining of tissue sections and immunofluorescence analysis of cell suspensions. The first CD3+ cells appeared in the thymus on embryonic day 9 (E9) when the CD3 Ag was restricted to the cytoplasm. In tissue sections, both TCR-1+ and TCR-2+ cells were observed on E12, whereas only the TCR-1 cells were identifiable by surface immunofluorescence. On the next day, when a discrete thymic medullary region was first recognizable, the TCR-1 cells were present in both cortex and medulla. Two days later (E15), TCR-1 cells were found in the spleen. Surface TCR-2+ cells did not appear until E14, began to migrate in to the medulla on E17, and appeared in the spleen on E19. The first TCR-1 cells thus move quickly through this maturational pathway, whereas TCR-2 cells undergo a prolonged developmental period in the cortex. While most TCR-1+ cells were CD4-CD8-, a minor subpopulation (5 to 15%) were CD4-CD8+, and less than 1% were CD4+CD8+. In contrast, immature TCR-2+ thymocytes in the cortex were predominantly CD4+CD8+, whereas cells expressing a higher density of the CD3/TCR-2 complex were either CD4+CD8- or CD4-CD8+ and were localized in the thymic medulla. In the medulla of the mature thymus, the TCR-1+ cells preferentially occupy the cortico-medullary junction and form small aggregates around vessels. TCR-2+ cells were less frequent in these areas of TCR-1 accumulation. The thymic ontogeny and, by implication, the selection of the receptor repertoire thus differs substantially for these two TCR isotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号