首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Rab6 is a key regulator in the retrograde transfer from endosomes via the Golgi to the ER. Three isoforms of Rab6 have been identified, the ubiquitously expressed Rab6A and Rab6A', and the brain specific Rab6B. Recent studies have shown that Rab6A' is the major isoform regulating this retrograde transport. Cytoplasmic dynein is the main motor protein complex for this transport. Dynein consists of two heavy chains, two intermediate chains, four light intermediate chains and several light chains, called roadblock/LC7 proteins or DYNLRB proteins. In mammalian cells two light chain isoforms have been identified, DYNLRB1 and DYNLRB2. We here show with yeast-two-hybrid, co-immunoprecipitation and pull down studies that DYNLRB1 specifically interacts with all three Rab6 isoforms and co-localises at the Golgi. This is the first example of a direct interaction between Rab6 isoforms and the dynein complex. Pull down experiments showed further preferred association of DYNLRB1 with GTP-bound Rab6A and interestingly GDP-bound Rab6A' and Rab6B. In addition DYNLRB1 was found in the Golgi apparatus where it co-localises with EYFP-Rab6 isoforms. DYNLRB is a putative modulator of the intrinsic GTPase activity of GTP-binding proteins. In vitro we were not able to reproduce this effect on Rab6 GTPase activity.  相似文献   

2.
The Rab6 subfamily of small GTPases consists of three different isoforms: Rab6A, Rab6A' and Rab6B. Both Rab6A and Rab6A' are ubiquitously expressed whereas Rab6B is predominantly expressed in brain. Recent studies have shown that Rab6A' is the isoform regulating the retrograde transport from late endosomes via the Golgi to the ER and in the transition from anaphase to metaphase during mitosis. Since the role of Rab6B is still ill defined, we set out to characterize its intracellular environment and dynamic behavior. In a Y-2H search for novel Rab6 interacting proteins, we identified Bicaudal-D1, a large coiled-coil protein known to bind to the dynein/dynactin complex and previously shown to be a binding partner for Rab6A/Rab6A'. Co-immunoprecipitation studies and pull down assays confirmed that Bicaudal-D1 also interacts with Rab6B in its active form. Using confocal laser scanning microscopy it was established that Rab6B and Bicaudal-D1 co-localize at the Golgi and vesicles that align along microtubules. Furthermore, both proteins co-localized with dynein in neurites of SK-N-SH cells. Live cell imaging revealed bi-directional movement of EGFP-Rab6B structures in SK-N-SH neurites. We conclude from our data that the brain-specific Rab6B via Bicaudal-D1 is linked to the dynein/dynactin complex, suggesting a regulatory role for Rab6B in the retrograde transport of cargo in neuronal cells.  相似文献   

3.
The two isoforms of the Rab6 GTPase, Rab6A and Rab6A', regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A' function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150(Glued), a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A' likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A', through its interaction with p150(Glued) and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition.  相似文献   

4.
Rab11 and Rab6 guanosine triphosphatases are associated with membranes of the recycling endosomes (REs) and Golgi complex, respectively. Evidence indicates that they sequentially regulate a retrograde transport pathway between these two compartments, suggesting the existence of proteins that must co-ordinate their functions. Here, we report the characterization of two isoforms of a protein, Rab6-interacting protein 1 (R6IP1), originally identified as a Rab6-binding protein. R6IP1 also binds to Rab11A in its GTP-bound conformation. In interphase cells, R6IP1 is targeted to the Golgi in a Rab6-dependent manner but can associate with Rab11-positive compartments when the level of Rab11A is increased within the cells. Fluorescence resonance energy transfer analysis using fluorescence lifetime imaging shows that the overexpression of R6IP1 promotes an interaction between Rab11A and Rab6 in living cells. Accordingly, the REs marked by Rab11 and transferrin receptor are depleted from the cell periphery and accumulate in the pericentriolar area. However, endosomal and Golgi membranes do not appear to fuse with each other. We also show that R6IP1 function is required during metaphase and cytokinesis, two mitotic steps in which a role of Rab6 and Rab11 has been previously documented. We propose that R6IP1 may couple Rab6 and Rab11 function throughout the cell cycle.  相似文献   

5.
Analysis of the human Rab6A gene structure reveals the presence of a duplicated exon, and incorporation of either of the two exons by alternative splicing is shown to generate two Rab6 isoforms named Rab6A and Rab6A', which differ in only three amino acid residues located in regions flanking the PM3 GTP-binding domain of the proteins. These isoforms are ubiquitously expressed at similar levels, exhibit the same GTP-binding properties, and are localized to the Golgi apparatus. Overexpression of the GTP-bound mutants of Rab6A (Rab6A Q72L) or Rab6A' (Rab6A' Q72L) inhibits secretion in HeLa cells, but overexpression of Rab6A' Q72L does not induce the redistribution of Golgi proteins into the endoplasmic reticulum. This suggests that Rab6A' is not able to stimulate Golgi-to-endoplasmic reticulum retrograde transport, as described previously for Rab6A. In addition, Rab6A' interacts with two Rab6A partners, GAPCenA and "clone 1," but not with the kinesin-like protein Rabkinesin-6, a Golgi-associated Rab6A effector. Interestingly, we found that the functional differences between Rab6A and Rab6A' are contingent on one amino acid (T or A at position 87). Therefore, limited amino acid substitutions within a Rab protein introduced by alternative splicing could represent a mechanism to generate functionally different isoforms that interact with distinct sets of effectors.  相似文献   

6.
Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking   总被引:8,自引:2,他引:6  
The closely related Rab6 isoforms, Rab6A and Rab6A', have been shown to regulate vesicular trafficking within the Golgi and post-Golgi compartments, but studies using dominant active or negative mutant suggested conflicting models. Here, we report that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab6A and Rab6A' biological functions. Surprisingly, Rab6A seems to be largely dispensable in membrane trafficking events, whereas knocking down the expression of Rab6A' hampers the intracellular transport of the retrograde cargo marker, the Shiga Toxin B-subunit along the endocytic pathway, and causes defects in Golgi- associated protein recycling through the endoplasmic reticulum. We also showed that Rab6A' is required for cell cycle progression through mitosis and identify Ile(62) as a key residue for uncoupling Rab6A' functions in mitosis and retrograde trafficking. Thus, our work shows that Rab6A and Rab6A' perform different functions within the cell and suggests a novel role for Rab6A' as the major Rab6 isoform regulating previously described Rab6-dependent transport pathways.  相似文献   

7.
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.  相似文献   

8.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes.  相似文献   

9.
Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses.  相似文献   

10.
《The Journal of cell biology》1994,126(6):1393-1406
The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway.  相似文献   

11.
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.  相似文献   

12.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

13.
Bile salt-dependent lipase (BSDL) was detected in human SOJ-6 and rat AR4-2J pancreatic cells. Whereas AR4-2J cells actively secreted the enzyme, BSDL was retained within the Golgi compartment of SOJ-6 cells. Because Rab6 is involved in vesicle transport in the Golgi apparatus and the trans-Golgi network, we confirmed the presence of Rab6 in these cells. In rat AR4-2J cells, Rab6 as well as Rab1A/B and Rab2, partitioned between the cytosol and microsomes. In SOJ-6 cells Rab1A/B and Rab2 also partitioned between the cytosol and microsomes, but Rab6 was strictly associated with microsome membranes, suggesting a specific defect of Rab6 cycling in human SOJ-6 cells. The apparent defect of cycling in these cells is not due to the expression of a defective Rab6 since its correct sequence was confirmed. We further demonstrated that AR4-2J and SOJ-6 cells express the Rab-GDIbeta and Rab-GDIalpha isoforms, respectively. However, the sequence of Rab-GDIbeta, which may be the main form expressed by SOJ-6 cells, identified a few substitutions located in regions that are essential for Rab-GDI function. We conclude that the deficient secretion of BSDL by SOJ-6 cells could be due to the expression of defective Rab-GDIbeta. In spite of the alterations in Rab-GDIbeta, membrane proteins such as CD71 and NHE3 were correctly localized to the cell plasma membrane of SOJ-6 cells, suggesting that two functional distinct secretory pathway coexist in pancreatic cells.  相似文献   

14.
The small GTPase rab6A but not the isoform rab6A' has previously been identified as a regulator of the COPI-independent recycling route that carries Golgi-resident proteins and certain toxins from the Golgi to the endoplasmic reticulum (ER). The isoform rab6A' has been implicated in Golgi-to-endosomal recycling. Because rab6A but not A', binds rabkinesin6, this motor protein is proposed to mediate COPI-independent recycling. We show here that both rab6A and rab6A' GTP-restricted mutants promote, with similar efficiency, a microtubule-dependent recycling of Golgi resident glycosylation enzymes upon overexpression. Moreover, we used small interfering RNA mediated down-regulation of rab6A and A' expression and found that reduced levels of rab6 perturbs organization of the Golgi apparatus and delays Golgi-to-ER recycling. Rab6-directed Golgi-to-ER recycling seems to require functional dynactin, as overexpression of p50/dynamitin, or a C-terminal fragment of Bicaudal-D, both known to interact with dynactin inhibit recycling. We further present evidence that rab6-mediated recycling seems to be initiated from the trans-Golgi network. Together, this suggests that a recycling pathway operates at the level of the trans-Golgi linking directly to the ER. This pathway would be the preferred route for both toxins and resident Golgi proteins.  相似文献   

15.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

16.
Fragmentation of the Golgi ribbon is a common feature of many neurodegenerative diseases but little is known about the causes of this alteration. In Parkinson’s disease, it is believed to be the consequence of an ER–Golgi transport imbalance and/or of cytoskeleton alterations. In the present study, we analyze the mechanisms involved in Golgi fragmentation in differentiated PC12 cells treated with 6-hydroxydopamine or methamphetamine as cellular models of Parkinson’s disease. Our data demonstrate that Golgi fragmentation precedes and might trigger the aggregation of α-synuclein and the formation of inclusions, alterations in anterograde and retrograde transport between the endoplasmic reticulum and Golgi complex, and cytoskeleton damage. In contrast, fragmentation is directly related with alterations in the levels of Rab1, 2 and 8 and the SNARE protein syntaxin 5. Thus, overexpression of Rab1 and 8 and depletion of Rab2 and syntaxin 5 rescue the Golgi morphology. In conclusion, the homeostasis of a limited number of Rab and SNARE proteins is important for understanding the cytopathology of Parkinson’s disease.  相似文献   

17.
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and β-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.  相似文献   

18.
Golgi-bound Rab34 is a novel member of the secretory pathway   总被引:1,自引:0,他引:1       下载免费PDF全文
Golgi-localized Rab34 has been implicated in repositioning lysosomes and activation of macropinocytosis. Using HeLa cells, we undertook a detailed investigation of Rab34 involvement in intracellular vesicle transport. Immunoelectron microscopy and immunocytochemistry confirmed that Rab34 is localized to the Golgi stack and that active Rab34 shifts lysosomes to the cell center. Contrary to a previous report, we found that Rab34 is not concentrated at membrane ruffles and is not involved in fluid-phase uptake. Also, Rab34-induced repositioning of lysosomes does not affect mannose 6-phosphate receptor trafficking. Most strikingly, HeLa cells depleted of Rab34 by transfection with dominant-negative Rab34 or after RNA interference, failed to transport the temperature-sensitive vesicular stomatitis virus G-protein (VSVG) fused to green fluorescent protein (VSVG-GFP) from the Golgi to the plasma membrane. Transfection with mouse Rab34 rescued this defect. Using endogenous major histocompatibility complex class I (MHCI) as a marker, an endoglycosidase H resistance assay showed that endoplasmic reticulum (ER) to medial Golgi traffic remains intact in knockdown cells, indicating that Rab34 specifically functions downstream of the ER. Further, brefeldin A treatment revealed that Rab34 effects intra-Golgi transport, not exit from the trans-Golgi network. Collectively, these results define Rab34 as a novel member of the secretory pathway acting at the Golgi.  相似文献   

19.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

20.
C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号