首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NADH-cytochrome c reductase activity of bovine heart submitochondrial particles was found to be slowly (half-time of 16 min) and progressively lost upon incubation with the Fe2(+)-adriamycin complex. In addition to this slow progressive inactivation seen on incubation, a reversible fast phase of inhibition was also seen. However, if EDTA was added to the incubation mixture within 15 s, the slow progressive loss in activity was largely preventable. Separate experiments indicated that EDTA removed about one-half of the iron from the Fe2(+)-adriamycin complex in about 40 s. These results indicated the requirement for iron for the inactivation process. Since the Vmax. for the fast phase of inhibition was decreased by the inhibitor, the inhibition pattern was similar to that seen for uncompetitive or mixed-type inhibition. The direct binding of both Fe3(+)-adriamycin and adriamycin to submitochondrial particles was also demonstrated, with the Fe3(+)-adriamycin complex binding 8 times more strongly than adriamycin. Thus binding of Fe3(+)-adriamycin to the enzyme or to the inner mitochondrial membrane with subsequent generation of oxy radicals in situ is a possible mechanism for the Fe3(+)-adriamycin-induced inactivation of respiratory enzyme activity.  相似文献   

2.
Electron paramagnetic resonance studies of the Fe2+- and Fe3+-adriamycin complexes are reported which demonstrate iron-mediated reduction of O2 by adriamycin. Under anaerobic conditions, Fe2+ binds to adriamycin, giving rise to an EPR-silent Fe2+-adriamycin complex. On addition of O2, the Fe2+ is oxidized to Fe3+ and a spectrum of Fe3+-adriamycin is seen. Under anaerobic conditions, the signal of Fe3+-adriamycin decreases as a function of time as the Fe3+ bound to adriamycin is reduced to Fe2+, and a transient spectrum of iron bound to oxidized adriamycin is observed. On addition of O2, the EPR signal of Fe3+-adriamycin returns as Fe2+ is oxidized back to Fe3+ with electron transfer to O2. This cycle of iron-catalyzed O2 reduction may be the mechanism of adriamycin's antitumor potency and some of its toxic side effects.  相似文献   

3.
Cytochrome c oxidase was found to be competitively inhibited by a complex formed between Fe3+ and the cardiotoxic antitumour drug adriamycin (doxorubicin) with an inhibition constant, Ki, of 12 microM. This competitive inhibition precedes the slower Fe3+-adriamycin induced inactivation of cytochrome c oxidase. In strong contrast with this result, free adriamycin was not observed to either inhibit or inactivate cytochrome c oxidase (Ki greater than 3 mM). Since, typically, polycations are known to inhibit cytochrome c oxidase, the competitive inhibition displayed by the Fe3+-adriamycin complex may also result from its polycationic character. Cytochrome c oxidase was also inhibited by pentan-1-ol (Ki 13 mM), and kinetic studies carried out in the presence of both inhibitors demonstrated that the Fe3+-adriamycin complex and pentan-1-ol are mutually exclusive inhibitors of cytochrome c oxidase. The inhibitor pentan-1-ol was also effective in preventing the slow inactivation of cytochrome c oxidase induced by Fe3+-adriamycin, presumably by blocking its binding to the enzyme. It is postulated that the slow inactivation of cytochrome c oxidase occurs when reactive radical species are produced while the Fe3+-adriamycin is complexed to cytochrome c oxidase in an enzyme-inhibitor complex. The Fe3+-adriamycin-induced inactivation of cytochrome c oxidase may be, in part, responsible for the cardiotoxicity of adriamycin.  相似文献   

4.
The anticancer drug adriamycin binds iron and these complexes cycle to reduce molecular oxygen (Zweier, J. L. (1984) J. Biol. Chem. 259, 6056-6058). Optical absorption, EPR, and M?ssbauer spectroscopic data are correlated with polarographic O2 consumption and chemical Fe2+ extraction measurements in order to characterize each step in this cycle. Fe3+ binds to adriamycin at physiologic pH forming a complex with an optical absorbance maximum at 600 nm. EPR signals at g = 4.2 and g = 2.01, and a doublet M?ssbauer spectrum with isomer shift delta = 0.57 mm/s and quadrupole splitting delta EQ = 0.74 mm/s are observed indicating that the Fe3+ bound to adriamycin is high spin S = 5/2. Under anaerobic conditions the absorbance maximum at 600 nm decreases with an exponential decay constant = 0.77 h-1, and the EPR and M?ssbauer spectra of Fe3+-adriamycin similarly decrease as the Fe3+ is reduced to EPR silent Fe2+. The Fe2+-adriamycin complex which is formed exhibits a M?ssbauer spectrum with delta = 1.18 mm/s and delta EQ = 1.82 mm/s indicative of high spin Fe2+. As the EPR spectra of Fe3+-adriamycin decrease on reduction of the Fe3+ to Fe2+ a signal of the oxidized adriamycin free radical appears at g = 2.004 with line width of 8 G. On exposure to O2 the absorption maximum at 600 nm, the Fe3+ EPR, and the Fe3+ M?ssbauer spectra all return. Polarographic measurements demonstrate that O2 is consumed and that H2O2 is formed. Addition of high affinity Fe2+ chelators block O2 consumption indicating that Fe2+ formation is essential for O2 reduction. This cycle of iron-mediated O2 reduction can explain the formation of the reactive reduced oxygen and adriamycin radicals which are thought to mediate the biological activity of adriamycin.  相似文献   

5.
A recently developed method has been utilized to demonstrate the generation of hydroxyl radicals (HObullet) in the immediate proximity of DNA by cop-per(II)/iron(HI)-adriamycin in the presence of ascorbate and hydrogen peroxide. SECCA, a succinylated derivative of coumarin, generates the fluorescent 7-hydroxy-SECCA following reaction with HObullet. SECCA was coupled to polylysine or to histone HI and then complexed to DNA. When HO' was generated in the proximity of DNA by polylysine-coupled iodine-125, which emits short range Auger electrons, 7-hydroxy-SECCA was produced. DMSO was only moderately efficient in reducing the fluorescence induction, demonstrating the “local” generation of HObullet in this system. Copper(II)/iron(III)-adriamycin in the presence of ascorbate and hydrogen peroxide generated the fluorescent 7-hydroxy-SECCA both when SECCA was free in solution and when SECCA was DNA-conjugated. With SECCA free in solution, the fluorescence induction was almost eliminated in the presence of HObullet scavengers (ethanol, tertbutanol or DMSO) and the relative efficiency of the scavengers in reducing the fluorescence followed their rate constant with HObullet. Furthermore, SECCA incubated with a singlet oxygen-generating compound demonstrated no fluorescence induction. When SECCA was positioned in close proximity to DNA as a SECCA-histone-H1-DNA complex, the relative efficiency of the scavengers in reducing the fluorescence still followed their rate constant with HO'; overall however the scavengers were much less effective in reducing the fluorescence, due presumably to the formation of HObullet radical in the immediate vicinity of DNA. These data suggest that copper(II)/iron(III)-adriamycin produces HO' in the presence of ascorbate and hydrogen peroxide whether unbound or bound to DNA and suggest that in the latter case scavengers would not prevent HObullet from attacking chromatin. In addition, the ability of DMSO to trap HObullet was shown to decrease as the conformation of the HI-DNA complex becomes more compact indicating the strong dependence of the trapping ability on chromatin conformation.  相似文献   

6.
1. Catecholamines were found to reduce Fe(III)-bleomycin to the ferrous state. Aminochrome, an oxidation product of catecholamine, rapidly appears in the reaction solution. 2. The purple colour of Fe(III)-catecholamine is also detected in the reaction solution, suggesting that iron is transferred from bleomycin to catecholamine. 3. Gel filtration studies confirm that catecholamines are able to take up iron from the iron-drug complex.  相似文献   

7.
A comparison of an undecairon(III) complex with the ferritin iron core   总被引:1,自引:0,他引:1  
The iron core of ferritin is comprised of up to 4,500 Fe(III) atoms as Fe2O3.nH2O, which is maintained in solution by a surrounding, spherical coat of protein. Organisms as diverse as bacteria and man use the ferritin iron-protein complex as a reservoir of stored iron for other essential proteins. To extend studies of the steps in polynuclear iron core formation, a recently characterized undecairon(III) oxo-hydroxo aggregate [Fe11 complex] (Gorun et al., J. Am. Chem. Soc. 109, 3337 [1987]) was examined by x-ray absorption spectroscopy as a model for an intermediate. The results, which are comparable to the previous x-ray diffraction studies, show near neighbors (Fe-O) at 1.90 A that are distinct from those in ferritin and a longer distance of 2.02 A. However, contributions from neighbors (Fe-C) known to exist at ca. 2.7 A were obscured by a highly ordered Fe-Fe interaction and were not detectable in the Fe11 complex in contrast to a previously characterized Fe(III) cluster bound to the protein coat. Of the two Fe-Fe interactions detectable in the Fe11 complex, the shortest, at 3.0 A is particularly interesting, occurring at the same distance as a full shell (CN = 6) in ferritin, but having fewer Fe neighbors (CN = 2-3) characteristic of an intermediate in core formation. The incomplete Fe-Fe shell is much more ordered than in ferritin, suggesting that the disorder in ferritin cores may be associated with the later steps of the core growth. Differences between the Fe11 complex and the full core of ferritin indicate the possibility of intermediates in ferritin iron formation that might be like Fe11.  相似文献   

8.
Previous kinetics studies with homopolymer ferritins (bullfrog M-chain, human H-chain and Escherichia coli bacterial ferritins) have established that a mu-1,2-peroxo diferric intermediate is formed during Fe(II) oxidation by O2 at the ferroxidase site of the protein. The present study was undertaken to determine whether such an intermediate is formed also during iron oxidation in horse spleen ferritin (HoSF), a naturally occurring heteropolymer ferritin of H and L-subunits (approximately 3.3 H-chains/HoSF), and to assess its role in the formation of the mineral core. Multi-wavelength stopped-flow spectrophotometry of the oxidative deposition of iron in HoSF demonstrated that a transient peroxo complex (lambda(max) approximately 650 nm) is produced in this protein as for other ferritins. The peroxo complex in HoSF is formed about fourfold slower than in human H-chain (HuHF) and decays more slowly (approximately threefold) as well, at an iron level of two Fe(II)/H-chain. However, as found for HuHF, a second intermediate is formed in HoSF as a decay product of the peroxo complex. Only one-third of the expected peroxo complex forms at the ferroxidase centers of HoSF when two Fe(II)/H-subunits are added to the protein, dropping to only approximately 14% when 20 Fe(II)/H-chain are added, indicating a declining role of the peroxo complex in iron deposition. In contrast to HuHF, HoSF does not enzymatically regenerate the observable peroxo complex. The kinetics of mineralization in HoSF are modeled satisfactorily by a mechanism in which the ferroxidase site rapidly produces an incipient core from a single turnover of iron, upon which subsequent Fe(II) is oxidized autocatalytically to build the Fe(O)OH(s) mineral core. This model supports a role for the L-chain in iron mineralization and helps to explain the widespread occurrence of heteropolymer ferritins in tissues of vertebrates.  相似文献   

9.
Polynuclear iron complexes of Fe(III) and phosphate occur in seawater and soils and in cells where the iron core of ferritin, the iron storage protein, contains up to 4500 Fe atoms in a complex with an average composition of (FeO.OH)8FeO.OPO3H2. Although phosphate influences the size of the ferritin core and thus the availability of stored iron, little is known about the nature of the Fe(III)-phosphate interaction. In the present study, Fe-phosphate interactions were analyzed in stable complexes of Fe(III).ATP which, in the polynuclear iron form, had phosphate at interior sites. Such Fe(III).ATP complexes are important not only as models but also because they may play a role in intracellular iron transport and in iron toxicity; the complexes were studied by extended x-ray absorption fine structure, EPR, NMR spectroscopy, and measurement of proton release. Mononuclear iron complexes exhibiting a g' = 4.3 EPR signal were formed at Fe:ATP ratios less than or equal to 1:3, and polynuclear iron complexes (Fe greater than or equal to 250, EPR silent at g' = 4.3) were formed at an Fe:ATP ratio of 4:1. No NMR signals due to ATP were observed when Fe was in excess (Fe:ATP = 4:1). Extended x-ray absorption fine structure analysis of the polynuclear Fe(III).ATP complex was able to distinguish an Fe-P distance at 3.27 A in addition to the octahedral O at 1.95 A and 4-5 Fe atoms at 3.36 A. The Fe-O and Fe-Fe distances are the same as in ferritin, and the Fe-P distance is analogous to that in another metal-ATP complex. An observable Fe-P environment in such a large polynuclear iron cluster as the Fe(III).ATP (4:1) complex indicates that the phosphate is distributed throughout rather than merely on the surface, in contrast to earlier models of chelate-stabilized iron clusters. Complexes of Fe(III) and ATP similar to those described here may form in vivo either as normal components of intracellular iron metabolism or during iron excess where the consequent alteration of free nucleotide triphosphate pools could contribute to the observed toxicity of iron.  相似文献   

10.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

11.
We have examined the kinetics and mechanism by which iron can displace copper at the specific metal-binding sites of ovotransferrin. Fe2+ was added to Cu2+-ovotransferrin-CO3(2-) in the presence of NaHCO3 and ambient O2. The reaction has been followed by standard and stopped-flow spectrophotometry, EPR spectroscopy and analysis of chromogen-reactive Fe2+. The reaction is best described as triphasic. An initial jump in absorbance takes place in the first 2 s. In the next minute there is a further increase in absorbance and shift in the spectral maximum from 440 to 446 nm. The third phase is complex. The bulk of the spectrophotometric change, a decrease in absorbance with a shift to a maximum of 453 nm, lasts approx. 3 min. Minor spectral and EPR changes, however, take place over the next several hours. Chromogenic analysis of Fe2+ indicates that approx. 1 min is required to oxidize the Fe2+. EPR spectra reveal the formation of an Fe3+-ovotransferrin complex within the first 20 s; however, this lacks the characteristic doublet of specific Fe3+-ovotransferrin-CO3(2-). The simultaneous presence of specific Cu2+-ovotransferrin-CO3(2-) and Fe3+-ovotransferrin-CO3(2-) signals suggests a period in which the protein specifically binds both metal ions perhaps resulting from a differential reactivity of the two metal-binding sites. The addition of Cu(NO3)2 to Fe3+-ovotransferrin-CO3(2-) resulted in a complex with specific Fe3+ and non-specific Cu2+. The EPR spectrum of this complex and the final product of our displacement reaction were virtually identical. Distinct parallels in reaction of Cu2+-ovotransferrin-CO3(2-) with Fe(NH4)2(SO4)2, Fe(NO3)3 and Fe3+-nitrilotriacetic acid were observed. A reaction sequence involving the binding and oxidation of non-specific Fe2+ followed by Cu2+ displacement by Fe3+ at the specific sites and binding of non-specific Cu2+ is suggested.  相似文献   

12.
Specific and tight binding of Fe(III) by transferrin does not occur unless a suitable anion is concomitantly bound. Bicarbonate, which normally occupies the anion binding site of the protein, may be replaced by an oxalate ion. The resulting ternary complex of Fe(III), transferrin and oxalate is less than 35% as effective as the bicarbonate complex in serving as an iron donor for heme synthesis by the reticulocyte. However, the binding of transferrin to the reticulocyte is not altered by the substitution of oxalate for bicarbonate. When both the oxalate and bicarbonate forms are incubated with reticulocytes, the uptake of iron from the bicarbonate complex is substantially depressed. The free oxalate ion, at the same concentration as the ternary Fe-transferrin-oxalate complex, does not alter the uptake of iron by reticulocytes from the native form of transferrin. The ternary Fe-transferrin-malonate complex is also less efficient than the bicarbonate complex as an iron donor to the reticulocyte, but the effect is less striking than that observed with the oxalate complex. The hypothesis is advanced that the mechanism of iron uptake from transferrin during the transferrin-reticulocyte interaction first entails an attack upon the anion bound to the protein, following which iron release to the heme-synthesizing apparatus of the cell takes place.  相似文献   

13.
In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics of the mixed-valence Fe2(+)-Fe3+ complex and its relationship to the mononuclear Fe3+ complex in horse spleen apoferritin samples to which 0-240 iron atoms were added was examined by EPR spectroscopy. The results indicate that the mononuclear complex is not a precursor to the formation of the mixed-valence complex. Competitive binding studies with Cd2+, Zn2+, Tb3+, and UO2+(2) suggest that the mixed-valence complex is formed on the interior of the protein in the vicinity of the 2-fold axis of the subunit dimer. The mixed-valence complex could be generated by the partial oxidation of Fe2+ in apoferritin containing 120 Fe2+ or by the addition of up to 120 Fe2+ to ferritin already containing 18 Fe3+/protein molecule. The fact that the complex is generated during early Fe2+ oxidation suggests that it may be a key intermediate during the initial oxidative deposition of iron in the protein. The unusual EPR powder lineshape at 9.3 GHz of the mixed-valence complex was simulated with a rhombic g-tensor (gx = 1.95, gy = 1.88, gz = 1.77) and large linewidths and g-strain parameters. The presence of significant g-strain in the complex probably accounts for the failure to observe an EPR signal at 35 GHz and likely reflect considerable flexibility in the structure of the metal site. The temperature dependence of the EPR intensity in the range 8-38 K was modeled successfully by an effective spin Hamiltonian including exchange coupling (-2JS1.S2) and zero-field terms, from which an antiferromagnetic coupling of J = -4.0 +/- 0.5 cm-1 was obtained. This low value for J may reflect the presence of a mu-oxo bridge(s) in the dimer.  相似文献   

14.
P K Dutta  J A Hutt 《Biochemistry》1986,25(3):691-695
Characteristic resonance Raman spectra are observed on ionization of the phenolic groups in adriamycin. On the basis of these results, vibrational assignments for the Raman bands of adriamycin are reported. Distinct Raman spectra are observed for Cu(II)-adriamycin complexes at pH approximately 5 and pH approximately 13. The data indicate that at lower pH a bis complex of Cu(II) is formed, which transforms to a polymeric Cu(II) chelate at higher pH. Upon interaction of the metal-drug complex with calf thymus DNA at pH approximately 5, a ternary complex is formed in which the Cu(II)-complexed adriamycin is intercalated into DNA.  相似文献   

15.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

16.
Kwok EY  Severance S  Kosman DJ 《Biochemistry》2006,45(20):6317-6327
In high-affinity iron uptake in the yeast Saccharomyces cerevisiae, Fe(II) is oxidized to Fe(III) by the multicopper oxidase, Fet3p, and the Fe(III) produced is transported into the cell via the iron permease, Ftr1p. These two proteins are likely part of a heterodimeric or higher order complex in the yeast plasma membrane. We provide kinetic evidence that the Fet3p-produced Fe(III) is trafficked to Ftr1p for permeation by a classic metabolite channeling mechanism. We examine the (59)Fe uptake kinetics for a number of complexes containing mutant forms of both Fet3p and Ftr1p and demonstrate that a residue in one protein interacts with one in the other protein along the iron trafficking pathway as would be expected in a channeling process. We show that, as a result of some of these mutations, iron trafficking becomes sensitive to an added Fe(III) chelator that inhibits uptake in a strictly competitive manner. This inhibition is not strongly dependent on the chelator strength, however, suggesting that Fe(III) dissociation from the iron uptake complex, if it occurs, is kinetically slow relative to iron permeation. Metabolite channeling is a common feature of multifunctional enzymes. We constructed the analogous ferroxidase, permease chimera and demonstrate that it supports iron uptake with a kinetic pattern consistent with a channeling mechanism. By analogy to the Fe(III) trafficking that leads to the mineralization of the ferritin core, we propose that ferric iron channeling is a conserved feature of iron homeostasis in aerobic organisms.  相似文献   

17.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Density-functional calculations have been used to examine the electronic structure and bonding in the recently reported complex [(PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes)](+) (1(+), IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene). This mixed valent Fe(II)Fe(I) complex features a rotated geometry that places a carbonyl ligand in a semi-bridging position, which makes it an accurate model of the S =(1/2) resting state of the [FeFe]-hydrogenase active site. Calculations indicate that the unpaired electron in this complex lies almost entirely on the rotated iron center, implying that this iron remains in the Fe(I) oxidation state, while the unrotated iron has been oxidized to Fe(II). The frontier molecular orbitals in 1(+) are compared with those in the neutral Fe(I)Fe(I) precursor (PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes) at both its optimized geometry (1) and constrained to a rotated geometry (1(rot)). These theoretical results are used to address the role of the bridging CO ligand in 1(+) and to predict reactivity patterns; they are related back to the intricate biological mechanism of [FeFe]-hydrogenase.  相似文献   

19.
A new concerted mechanism is proposed for the conversion of methane to methanol on intermediate Q of soluble methane monooxygenase (sMMO), the active site of which is considered to involve an Fe2(mu-O)2 diamond core. A hybrid density functional theory (DFT) method is used for our mechanistic study on the important reactivity of the bare FeO+ complex and a diiron model of intermediate Q. The reaction pathway for the methane hydroxylation on the diiron complex is essentially identical to that for the gas-phase reaction by the bare FeO+ complex. Methane is highly activated on the dinuclear iron model through the formation of a methane complex, in which a coordinatively unsaturated iron plays a central role in the bonding interaction between the diiron model and substrate methane. A H atom abstraction via a four-centered transition state and a recombination of the OH and CH3 groups via a three-centered transition state successively occur on the dinuclear iron-oxo species, leading to the formation of a methanol complex that corresponds to intermediate T. These electronic processes take place in a concerted manner. Our mechanism for methane hydroxylation by sMMO is different from the radical mechanism that has been widely accepted for enzymatic hydrocarbon hydroxylation, especially by cytochrome P450.  相似文献   

20.
1. Citrate binds to Fe(III)-bleomycin, removing the ferric ion from the iron-drug complex; a reaction that may be of physiological significance. 2. Low concentrations of citrate markedly enhance the rate of iron transfer from Fe(III)-bleomycin to apotransferrin; an iron binding plasma protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号