首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z) displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1) costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.  相似文献   

2.
Nam KO  Shin SM  Lee HW 《Cytokine》2006,33(2):87-94
4-1BB, one of co-stimulatory molecules, is a member of TNF receptor superfamily and expressed on T cells upon TCR ligation. We have shown that 4-1BB is a co-stimulatory molecule enhancing cell cycle progression and inhibiting activation-induced cell death of CD8+ T cells by enhancing TCR signaling pathways. Here, we first report that the cross-linking of 4-1BB increased the expression of IL-13 mRNA and protein, and its secretion apparently via calcineurin, a Ca2+/calmodulin-dependent phosphatase. Ligation of 4-1BB with p815-m-4-1BBL evoked intracellular Ca2+ level in CD8+ T cells. CD8+ T cells express IL-13 receptor alpha1 mRNA. Incubation with anti-IL-13 blocking mAb reduced proliferation of CD8+ T cells enhanced by 4-1BB, and the treatment of CD3/4-1BB-ligated CD8+ T cells with recombinant IL-13 enhances cell proliferation, indicating that 4-1BB-induced IL-13 expression is partially responsible for the CD8+ T cell expansion in an autocrine or paracrine manner.  相似文献   

3.
Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naïve (CD45RA+CD27+) and memory (CD45RACD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-γ and TNF-α levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-γ and TNF-α production in CD28Hi naïve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naïve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naïve CD8+ T cells would require CD28-mediated co-stimulation.  相似文献   

4.
T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.  相似文献   

5.
Successful immunotherapy of solid tumors has proven difficult to achieve. The aim of the current study was to further investigate the effects of peripheral CD80-mediated co-stimulation on the efficacy of polyclonal anti-tumor effector CTL in an adoptive transfer model. Splenocytes obtained from wild-type mice immunized with CD80-transduced EL4 tumor cells were expanded in vitro in the presence of either IL-12 or IL-15 and irradiated CD80-transduced EL4 tumor cells. Polyclonal CD8 T cells were the major subset in the effector population. Primed effector cells were adoptively transferred into immuno-deficient Rag-1-deficient mice which were then challenged with syngeneic vector-control or CD80-transduced EL4 tumor cells. Expression of CD80 enhanced the elimination of EL4 tumors and mouse survival. Both IL-12 and IL-15 cultured cells had enhanced cytotoxicity. Importantly, anti-tumor memory was maintained without tumor evasion following re-challenge with either CD80-transduced and vector-control EL4 cells. We also show, using antibody-mediated depletion, that endogenous NK cells present in Rag-1-deficent mice exert anti-EL4 tumor activity that is enhanced by CD80 expression. Collectively these data show that peripheral co-stimulation by tumor expression of CD80 results in enhanced anti-tumor efficacy of NK and polyclonal effector T cells, and suggest that TCR repertoire diversity helps protect against tumor escape and provides memory with resultant robust immunity to subsequent tumor challenge irrespective of CD80 status.  相似文献   

6.
Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.  相似文献   

7.
8.
A single intratumoral injection of IL-12 and GM-CSF-loaded slow-release microspheres induces T cell-dependent eradication of established primary and metastatic tumors in a murine lung tumor model. To determine how the delivery of cytokines directly to the microenvironment of a tumor nodule induces local and systemic antitumor T cell activity, we characterized therapy-induced phenotypic and functional changes in tumor-infiltrating T cell populations. Analysis of pretherapy tumors demonstrated that advanced primary tumors were infiltrated by CD4+ and CD8+ T cells with an effector/memory phenotype and CD4+CD25+Foxp3+ T suppressor cells. Tumor-associated effector memory CD8+ T cells displayed impaired cytotoxic function, whereas CD4+CD25+Foxp3+ cells effectively inhibited T cell proliferation demonstrating functional integrity. IL-12/GM-CSF treatment promoted a rapid up-regulation of CD43 and CD69 on CD8+ effector/memory T cells, augmented their ability to produce IFN-gamma, and restored granzyme B expression. Importantly, treatment also induced a concomitant and progressive loss of T suppressors from the tumor. Further analysis established that activation of pre-existing effector memory T cells was short-lived and that both the effector/memory and the suppressor T cells became apoptotic within 4 days of treatment. Apoptotic death of pre-existing effector/memory and suppressor T cells was followed by infiltration of the tumor with activated, nonapoptotic CD8+ effector T lymphocytes on day 7 posttherapy. Both CD8+ T cell activation and T suppressor cell purge were mediated primarily by IL-12 and required IFN-gamma. This study provides important insight into how local IL-12 therapy alters the immunosuppressive tumor milieu to one that is immunologically active, ultimately resulting in tumor regression.  相似文献   

9.
Establishment of host-protective memory T cells against tumors is the objective of an antitumor immunoprophylactic strategy such as reinforcing T cell costimulation via CD40-CD40L interaction. Previous CD40-targeted strategies assumed that T cell costimulation is an all-or-none phenomenon. It was unknown whether different levels of CD40L expression induce quantitatively and qualitatively different effector T cell responses. Using mice expressing different levels of CD40L, we demonstrated that the greater the T cell CD40L expression the less tumor growth occurred; the antitumor T cell response was host-protective. Lower levels of CD40L expression on T cells induced IL-10-mediated suppression of tumor-regressing effector CD8(+) T cells and higher productions of IL-4 and IL-10. Using mice expressing different levels of CD40 or by administering different doses of anti-CD40 Ab, similar observations were recorded implying that the induction of protumor or antitumor T cell responses was a function of the extent of CD40 cross-linking. IL-10 neutralization during priming with tumor Ags resulted in a stronger tumor-regressing effector T cell response. Using IL-10(-/-) DC for priming of mice expressing different levels of CD40L and subsequent transfer of the T cells from the primed mice to nu/nu mice, we demonstrated the protumor role of IL-10 in the induction of tumor-promoting T cells. Our results demonstrate that a dose-dependent cross-linking of a costimulatory molecule dictates the functional phenotype of the elicited effector T cell response. The T cell costimulation is a continuum of a function that induces not only graded T cell responses but also two counteracting responses at two extremes.  相似文献   

10.
Recombinant immunoreceptors with specificity for the carcinoembryonic Ag (CEA) can redirect grafted T cells to a MHC/Ag-independent antitumor response. To analyze receptor-mediated cellular activation in the context of CD28 costimulation, we generated: 1) CEA+ colorectal tumor cells that express simultaneously B7-1 and B7-2, and 2) CEA-specific immunoreceptors that harbor intracellularly the signaling moities either of CD28 (BW431/26-scFv-Fc-CD28), CD3zeta (BW431/26-scFv-Fc-CD3zeta), or FcepsilonRIgamma (BW431/26-scFv-Fc-gamma). By retroviral gene transfer, we grafted activated T cells from the peripheral blood with these immunoreceptors. T cells that express the FcepsilonRIgamma or CD3zeta signaling receptor lysed specifically CEA+ tumor cells and secreted high amounts of IFN-gamma upon receptor cross-linking, whereas anti-CEA-CD28 receptor-grafted T cells did not, indicating that CD28 signaling alone is not sufficient for efficient T cell activation. CD28 costimulation did not affect cytolysis by T cells equipped with gamma- or zeta-signaling receptors, but enhanced both IFN-gamma secretion and proliferation. CD28 costimulation, however, was required for efficient IL-2 secretion of anti-CEA-gamma receptor-grafted T cells. Both purified CD4+ and CD8+ T cells grafted with immunoreceptors required CD28 costimulation for complete T cell activation. We integrated both CD28 and CD3zeta signaling domains into one combined immunoreceptor molecule (BW431/26-scFv-Fc-CD28/CD3zeta) with dual signaling properties. T cells grafted with the combined CD28/CD3zeta signaling receptor secreted high amounts of IL-2 upon Ag binding without exogenous B7/CD28 costimulation, demonstrating that both MHC-independent cellular activation and CD28 costimulation for complete T cell activation can be delivered by one recombinant receptor molecule.  相似文献   

11.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

12.

Background

Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination of costimulatory endodomains for CAR construction to improve the effector functions of the engineered T cells. Camelid single-domain antibodies (VHHs), which are the smallest single domain antibodies, can endow great targeting ability to CAR-engineered T cells.

Methods

We have developed a method to generate genetically engineered Jurkat T cells armed with a CAR comprising the anti-HER2 VHH as targeting moiety. From an immune camel library, five VHH clones were selected as a set of oligoclonal anti-HER2 VHHs that exhibited diverse binding abilities and joined them to CD28-CD3ζ and CD28-OX40-CD3ζ signaling endodomains. Jurkat T cells expression of VHH-CARs and cell functions were evaluated.

Results

The oligoclonal engineered T cells showed higher proliferation, cytokine secretion and cytotoxicity than each individual VHH-CAR-engineered Jurkat T cells.

Conclusions

The combination of superior targeting ability of oligoclonal VHHs with the third generation CAR can substantially improve the function of engineered T cells.

General significance

Antigen-specific directed oligoclonal T cells are alternatively promising, but safer systems, to combat tumor cells.  相似文献   

13.
Artificial receptors provide a promising approach to target T lymphocytes to tumor antigens. However, the receptors described thus far produce either an activation or a co-stimulatory signal alone, thus limiting the spectrum of functions accomplished by the genetically modified cells. Here we show that human primary T lymphocytes expressing fusion receptors directed to prostate-specific membrane antigen (PSMA) and containing combined T-cell receptor-zeta (TCRzeta), and CD28 signaling elements, effectively lyse tumor cells expressing PSMA. When stimulated by cell-surface PSMA, retrovirally transduced lymphocytes undergo robust proliferation, expanding by more than 2 logs in three weeks, and produce large amounts of interleukin-2 (IL-2). Importantly, the amplified cell populations retain their antigen-specific cytolytic activity. These data demonstrate that fusion receptors containing both TCR and CD28 signaling moieties are potent molecules able to redirect and amplify human T-cell responses. These findings have important implications for adoptive immunotherapy of cancer, especially in the context of tumor cells that fail to express major histocompatibility complex antigens and co-stimulatory molecules.  相似文献   

14.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

15.
CD28 and CTLA-4 (CD152) play a pivotal role in the regulation of T cell activation. Upon ligation by CD80 (B7-1) or CD86 (B7-2), CD28 induces T cell proliferation, cytokine production, and effector functions, whereas CTLA-4 signaling inhibits expansion of activated T cells and induces tolerance. Therefore, we hypothesized that co-stimulatory molecules that preferentially bind CD28 or CTLA-4 would have dramatically altered biological properties. We describe directed molecular evolution of CD80 genes derived from human, orangutan, rhesus monkey, baboon, cat, cow, and rabbit by DNA shuffling and screening. In contrast to wild-type CD80, the evolved co-stimulatory molecules, termed CD28-binding protein (CD28BP) and CTLA-4-binding protein (CTLA-4BP), selectively bind to CD28 or CTLA-4, respectively. Furthermore, CD28BP has improved capacity to induce human T cell proliferation and interferon-gamma production compared with wild-type CD80. In contrast, CTLA-4BP inhibited human mixed leukocyte reaction (MLR) and enhanced interleukin 10 production in MLR, supporting a role for CTLA-4BP in inducing T cell anergy and tolerance. In addition, co-stimulation of purified human T cells was significantly suppressed when CTLA-4BP was cotransfected with either CD80 or CD28BP. The amino acid sequences of CD28BP and CTLA-4BP were 61 and 96% identical with that of human CD80 and provide insight into the residues that are critical in the ligand binding. These molecules provide a new approach to characterization of CD28 and CTLA-4 signals and to manipulation of the T cell response.  相似文献   

16.
In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.  相似文献   

17.
18.
19.
During sensitization with dinitrofluorobenzene for contact hypersensitivity (CHS) responses, hapten-specific CD8(+) T cells develop into IFN-gamma-producing cells, and CD4(+) T cells develop into IL-4/IL-5-producing cells. Administration of IL-12 during sensitization skews CD4(+) T cell development to IFN-gamma-producing cells, resulting in exaggerated CHS responses. In the current report we tested the role of IL-12 on CD8(+) T cell development during sensitization and elicitation of CHS to dinitrofluorobenzene. Administration of IL-12 during hapten sensitization induced the expression of IL-12Rbeta2 on both CD4(+) and CD8(+) T cells, augmented IFN-gamma production by these T cell populations, and increased the magnitude and duration of the CHS response to hapten challenge. CHS responses were virtually identical in wild-type and IL-12 p40(-/-) mice. Since engagement of CD40 on APC may stimulate IL-12 production, we also tested the role of CD40-CD154 interactions on the development of IFN-gamma-producing CD4(+) and CD8(+) T cells following hapten sensitization. Development of IFN-gamma-producing CD4(+) T cells during hapten sensitization was absent in wild-type mice treated with anti-CD154 mAb or in CD154(-/-) mice. In contrast, the absence of CD40-CD154 signaling had little or no impact on the development of IFN-gamma-producing CD8(+) T cells. These results demonstrate that the development of hapten-specific Th1 effector CD4(+) T cells in CHS requires both CD40-CD154 interactions and IL-12, whereas the development of IFN-gamma-producing effector CD8(+) T cells can occur independently of these pathways.  相似文献   

20.
During human aging, one of the major changes in the T cell repertoire is a dramatic expansion of T cells with the atypical CD28-CD8+ phenotype. In this study, we show that this increase is a consequence not only of an expansion in the CD28-CD8+ population but also of a decrease in the number of CD28+CD8+ T cells. The decrease in circulating CD28+CD8+ T cells is dramatically accelerated after the age of 50 and is not accompanied by an equivalent reduction in the CD28+CD8+ subset. Our findings confirm that aging leads to an accumulation of CD45RO+ T cells within the CD28+CD8+ subset as previously observed. Surprisingly, we found an increase in CD45RA+ expression with age in the CD28-CD8+ subset. Immune-phenotyping for activation markers, measurement of telomere DNA content, and cytokine production analysis indicate that the large majority of CD28-CD8+ T cells are Ag-experienced, despite their CD45RA+ phenotype. Our study further demonstrates that the poor proliferative response displayed by CD28-CD8+ T cells is not a consequence of telomere shortening. Also, analysis of cytokine production at the single cell level revealed that the proportions of IFN-gamma +, IL-4+, and IL-10+ T cells are considerably higher among the CD28-CD8+ than the CD28+CD8+ subset. In summary, these data explain the presence of CD45RA+ T cells in the elderly, shed light on the phylogenetic origin of CD28-CD8+ T cells, and suggest a role for these cells in the immune senescence process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号