首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
2.
Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available and accessible source of keratinocytes, particularly for severe wounds encompassing large surface areas of the body and requiring prompt epithelialization.  相似文献   

3.
Adult stem cells (ASC)--able to self renew and to intervene in maintaining the structural and functional integrity of their original tissue--can express greater plasticity than traditionally attributed to them, adopting functional phenotypes and expression profiles of cells from other tissues. Therefore, they could be useful to regenerative medicine and tissue engineering. Transit-amplifying cells (TAC) are committed progenitors among the ASC and their terminally differentiated daughter cells. The ASC reside in a specialized physical location named niche, which constitutes a three-dimensional microenviroment where ASC and TAC are protected and controlled in their self-renewing capacity and differentiation. The niche can be located near or far from the recruitment point, requiring a short or long-distance cellular migration, respectively. This paper briefly reviews the current status of research about ASC plasticity, transdifferentiation, fusion and functional adaptation mechanisms. Subsequently, ASC and TAC occurrence, characteristics and location have been considered in the skin, cornea, respiratory tract, teeth, gastrointestinal tract, liver, pancreas, salivary glands, kidney, breast, prostate, endometrium, mesenchyma, bone marrow, skeletal and cardiac muscle, nervous system and pituitary gland. Moreover, the role of cancer ASC has also been revised.  相似文献   

4.
With the goal of obtaining clinically safe human adipose-derived stroma/stem cells (ASC) and eliminating the use of serum, we have developed a new culture system that allows the expansion of ASC as spheres in a defined medium. These spheres can be passaged several times. They are not only aggregated cells but rather originate from single cells as clonal spheres can be obtained after seeding at very low density and reform clonal spheres after dissociation. These spheres can also revert to monolayer growth when plated in medium containing human plasma and even generate fibroblast-like colonies (CFU-f). Under several differentiation-specific media, spheres-derived ASC maintain their capacity to differentiate into osteoblasts, endothelial cells and adipocytes. These results indicate that human ASC can be maintained in a serum-free 3D culture system, which is of great interest for the expansion in bioreactors of autologous ASC and their use in clinical trials.  相似文献   

5.
There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.  相似文献   

6.
Adipose‐derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self‐repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re‐construct damaged cartilage tissue. In this article, we have reviewed the most up‐to‐date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co‐culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Abstract

The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.  相似文献   

8.
9.
10.
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.  相似文献   

11.
12.
《Cytotherapy》2019,21(8):856-869
BackgroundAcute or chronic injury of articular cartilage leads to localized destruction. Difficulties with interface integration between the implant and native cartilage tissue can lead to an undesirable outcome. To improve cartilage repair and interface integration, we explored the therapeutic efficacy of microporous acellular extracellular matrix (ECM) combined with adipose-derived stem cell (ASC) sheets.MethodsMethods for fabricating ASC sheets and microporous acellular ECM were explored before transplanting the constructed ASC sheet/matrix in vivo and in vitro, respectively. After the operation, distal femur samples were collected at 6 and 12 weeks for further analysis.ResultsThe decellularization process removed 90% of the DNA but retained 82.4% of glycosaminoglycans (GAGs) and 82.8% of collagen, which are the primary components of cartilage matrix. The acellular matrix/ASC sheet construct treatment in vivo showed better interface integration, cartilage regeneration, and collagenous fiber arrangement, which resembles the native structure. There was a significant increase in GAG and collagen accumulation at the zone of regeneration and integration compared to other groups. Gene expression analysis showed that the mRNA level associated with cartilage formation significantly increased in the acellular matrix/ASC sheet group (p<0.05), which is consistent with the histological analysis.DiscussionASC sheets promote interface integration between the implant and native tissue. This effect, together with the acellular matrix as a graft, is beneficial for cartilage defect repair, which suggests that acellular matrix/ASC sheet bioengineered cartilage implants may be a better approach for cartilage repair due to their enhanced integration.  相似文献   

13.
The discovery of adipose-derived stromal cells (ASCs) has created many opportunities for the development of patient-specific cell-based replacement therapies. We have isolated multiple cell strains of ASCs from various anatomical sites (abdomen, arms/legs, breast, buttocks), indicating widespread distribution of ASCs throughout the body. Unfortunately, there exists a general lack of agreement in the literature as to their "stem cell" characteristics. We find that telomerase activity and expression of its catalytic subunit in ASCs are both below the levels of detection, independent of age and culturing conditions. ASCs also undergo telomere attrition and eventually senesce, while maintaining a stable karyotype without the development of spontaneous tumor-associated abnormalities. Using a set of cell surface markers that have been promoted to identify ASCs, we find that they failed to distinguish ASCs from normal fibroblasts, as both are positive for CD29, CD73 and CD105 and negative for CD14, CD31 and CD45. All of the ASC isolates are multipotent, capable of differentiating into osteocytes, chondrocytes and adipocytes, while fibroblasts show no differentiation potential. Our ASC strains also show elevated expression of genes associated with pluripotent cells, Oct-4, SOX2 and NANOG, when compared to fibroblasts and bone marrow-derived mesenchymal stem cells (BM-MSCs), although the levels were lower than induced pluripotent stem cells (iPS). Together, our data suggest that, while the cell surface profile of ASCs does not distinguish them from normal fibroblasts, their differentiation capacity and the expression of genes closely linked to pluripotency clearly define ASCs as multipotent stem cells, regardless of tissue isolation location.  相似文献   

14.
15.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

16.
There is significant potential for the use of adult mesenchymal stem cells in regenerating musckuloskeletal tissues. The sources of these stem cells discussed in this review are bone marrow, blood, adipose tissue, synovium, periosteum & cartilage. Adult mesenchymal stem cells of bone marrow origin are the cells which are heavily investigated in many studies and have been shown capable of producing a variety of connective tissues especially cartilage and bone. It has recently been suggested that bone marrow derived mesenchymal stem cells originate from microvascular pericytes, and, indeed, many of the tissues from which stem cells have been isolated have good vascularisation and they may give a varied source of cells for future treatments. Clinical trials have shown that these cells are able to be successfully used to regenerate tissues with good clinical outcome. Other sources are showing promise, however, is yet to be brought to the clinical level in humans.  相似文献   

17.
Adherent adipose-derived stromal/stem cells (ASC) have been used in pre-clinical regenerative medical studies applied to a broad range of tissues with an ultimate goal of translating these findings to clinical safety and efficacy testing; however, many protocols passage the cells using porcine-derived trypsin. We have compared porcine trypsin with animal protein-free products from recombinant bacteria (TrypLE Express; Invitrogene) and corn (TrypZean; Sigma) based on cell yield, viability and immunophenotype. ASC harvested with each trypsin product were comparable.  相似文献   

18.
Background aimsTransplantation of mesenchymal stromal cells (MSC) derived from bone marrow (BM) or adipose tissue is expected to become a cell therapy for stroke. The present study compared the therapeutic potential of adipose-derived stem cells (ASC) with that of BM-derived stem cells (BMSC) in a murine stroke model.MethodsASC and BMSC were isolated from age-matched C57BL/6J mice. These MSC were analyzed for growth kinetics and their capacity to secrete trophic factors and differentiate toward neural and vascular cell lineages in vitro. For in vivo study, ASC or BMSC were administrated intravenously into recipient mice (1 × 105 cells/mouse) soon after reperfusion following a 90-min middle cerebral artery occlusion. Neurologic deficits, the degree of infarction, expression of factors in the brain, and the fate of the injected cells were observed.ResultsASC showed higher proliferative activity with greater production of vascular endothelial cell growth factor (VEGF) and hepatocyte growth factor (HGF) than BMSC. Furthermore, in vitro conditions allowed ASC to differentiate into neural, glial and vascular endothelial cells. ASC administration showed remarkable attenuation of ischemic damage, although the ASC were not yet fully incorporated into the infarct area. Nonetheless, the expression of HGF and angiopoietin-1 in ischemic brain tissue was significantly increased in ASC-treated mice compared with the BMSC group.ConclusionsCompared with BMSC, ASC have great advantages for cell preparation because of easier and safer access to adipose tissue. Taken together, our findings suggest that ASC would be a more preferable source for cell therapy for brain ischemia than BMSC.  相似文献   

19.
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号