首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treatment of long-term, stable para- and quadriplegics with pulsed electrical stimulation for pain control resulted in, anecdotally, a significant number of these individuals showing increased motor function as well as sensory awareness. This small pilot study was conducted in order to assess the hypothesis that pulsed electrical fields can effect diseased neurological function. Thirteen para- and quadriplegic subjects with 18 months of stable neurological signs and symptoms were exposed daily to pulsed electrical stimulation for a 6-month period and assessed for any improvement in motor function or sensory perception. The hypothesis is that pulsed electromagnetic fields can normalize viable but dysfunctional neuronal structures. Results were encouraging.  相似文献   

2.
Aim: To investigate the effect of introducing an interphase interval to a biphasic pulse on force production and muscle fatigue, during stimulation of the wrist and finger extensors and to determine whether the IPI effect on force is dependent on electrode position.

Methods: Electrically-induced contraction forces of the wrist and finger extensors were measured in 15 healthy subjects undergoing stimulation. These forces were assessed with interphase interval settings at 0, 100, and 200μs, with both electrodes located just distal to common extensor origin (proximal placement) or with the distal electrode placed over the extensor and abductor policies longus muscles (distal placement). The degree of discomfort related to stimulation sensation was evaluated using a numeric rating scale. Muscle fatigue was measured during proximal placement.

Results: Under both electrode locations, introduction of 100 or 200?μs interphase interval enhanced force production; yet, only the 100μs interphase interval increased force without increasing discomfort. Additionally, stimulation sensation was more comfortable with proximal placement. Introducing interphase interval significantly increased the muscle force output during a repetitive stimulation fatigue protocol.

Conclusions: When using neuromuscular electrical stimulation to activate the wrist and finger extensors, clinicians should consider locating both stimulating electrodes proximally over the extensor surface of the forearm and apply a 100?µs interphase interval to a biphasic pulse. Future research that should establish these findings in individuals with various pathologies, especially in patients with residual hand spasticity.  相似文献   


3.
Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200?Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50?Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.  相似文献   

4.
Voluntary motor drive is an important central command that descends via the corticospinal tract to initiate muscle contraction. When electrical stimulation (ES) is applied to an antagonist or agonist muscle, it changes the agonist muscle’s representative motor cortex and thus its voluntary motor drive. In this study, we used a reaction time task to compare the effects of weak and strong ES of the antagonist or agonist muscle during the premotor period of a wrist extension. We recorded motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) that was applied to the extensor carpi radialis (ECR; agonist) and flexor carpi radialis (FCR; antagonist). When stronger ES intensities were applied to the antagonist, the MEP control ratio in the ECR significantly increased during the premotor time. Furthermore, the MEP control ratio with stronger antagonist ES intensity was significantly larger than that in the agonist for the same ES intensity. In the FCR, the MEP control ratio was also significantly greater at the strong ES intensity than at the weak ES intensity. Furthermore, the MEP control ratio in the antagonist with a strong ES intensity was significantly larger than that in the agonist with the same ES intensity. These results suggest that agonist corticomotor excitability might be enhanced by ES of the antagonist, which in turn strongly activates the descending motor system in the preparation of agonist contraction.  相似文献   

5.
We previously reported the development of a force- and fatigue-model system that predicted accurately forces during repetitive fatiguing activation of human skeletal muscles using brief duration (six-pulse) stimulation trains. The model system was tested in the present study using force responses produced by longer duration stimulation trains, containing up to 50 pulses. Our results showed that our model successfully predicted the peak forces produced when the muscle was repetitively activated with stimulation trains of frequencies ranging from 20 to 40 Hz, train durations ranging from 0.5 to 1 s, and varied pulse patterns. The predicted peak forces throughout each protocol matched the experimental peak forces with r2 values above 0.9 and predicted successfully the forces at the end of each protocol with <15% error for all protocols tested. The success of our model system further supports its potential use for the design of optimal stimulation patterns for individual users during functional electrical stimulation.  相似文献   

6.
Objective: The aims of this study were to investigate the therapeutic potential of intestinal electrical stimulation (IES) for obesity. Experiments were performed to investigate the effects of IES on food intake, gastric tone, gastric accommodation, and its possible pathway. Research Methods and Procedures: Ten normal dogs and six dogs with truncal vagotomy were used in this study. Each dog was equipped with a gastric cannula for the measurement of gastric tone and accommodation by barostat and one pair of duodenal serosal electrodes for IES. The experiment on food intake was composed of both control session without IES and IES session after a 28‐hour fast. The experiment on gastric tone and accommodation was performed in the fasting and fed states and composed of three sessions: control, IES, and IES with NG‐nitro‐l ‐arginine. Results: IES significantly reduced food intake in the normal dogs (459.0 vs. 312.6 grams, p < 0.001). The food intake was negatively correlated with the fasting gastric volume during IES. IES significantly decreased fasting gastric tone in the normal dogs reflected as a decrease in gastric volume (89.1 vs. 261.3 mL, p < 0.01), which was abolished by vagotomy and NG‐nitro‐l ‐arginine. Discussion: IES reduces food intake and inhibits gastric tone in the fasting state. The inhibitory effect of IES on gastric tone is mediated by both vagal and nitrergic pathway.  相似文献   

7.
8.
跨颅电刺激对大鼠抑郁症的治疗作用   总被引:1,自引:0,他引:1  
目的:探讨跨颅电刺激对大鼠抑郁症的治疗作用。方法:跨颅电刺激抑郁症大鼠左侧前额叶皮层,敞箱实验测定大鼠行为学变化,荧光法测定单胺类递质含量的变化。结果:跨颅直流电和低频脉冲电刺激后,大鼠敞箱实验中垂直和水平运动得分均较模型组显著升高(P〈0.05);且大鼠左侧前额叶皮层和海马5-HT、NE含量较模型组显著升高(P〈0.05),而前额叶皮层DA含量无显著变化(P〉0.05)。结论:直流电和低频脉冲电跨颅刺激左侧前额叶皮层,对抑郁症均有显著治疗作用。  相似文献   

9.
BACKGROUND: Intramuscular plasmid injection followed by electroporation is an efficient method for gene therapy or vaccination. Several protocols have been described that give good transduction levels with several reporter genes. METHODS: In this work we have explored the efficiency of gene delivery upon variation of the different electrical parameters such as pulse length frequency and voltage monitoring both on short- and long-term protein production. RESULTS: Having defined the best performing parameters, we have designed a short electric treatment that gives good levels of plasmid-encoded protein in different species such as mice, rabbits and monkeys.  相似文献   

10.
The combined effect of electrical stimulation and cisplatin administration on HeLa cells was investigated. The combination of electric potentials (-0.5 V to 0.5 V) with 10-Hz frequency and 1000 ng/mL cisplatin decreased cancer cell viability by 32% and was more effective than either treatment given alone. Combined treatment with cisplatin and electrical stimulation also increased the number of apoptotic cells. It is shown that the efficacy of cisplatin was enhanced in electrically stimulated HeLa cells, and the addition of electrical stimulation amplified the chemotherapeutic effect of cisplatin in cervical cancer cells.  相似文献   

11.
Cultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease‐related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation. Thus, more simple and easy handling method will be promising. In this study, we aimed to provide a method to form C2C12 myotubes with regulated sizes and orientations in simple line patterns. We used a poly(dimethylsiloxane) (PDMS) stamp and a 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to fabricate line patterns for myotube formation onto a culture dish. We confirmed that C2C12 myotubes of well‐defined size and orientation were reproducibly formed. In particular, myotubes formed in the micropatterned lines showed the increased fusion efficiency. Then, functional dynamics in the micropatterned myotubes were detected and analyzed using a calcium imaging method. We confirmed micropatterning in line patterns enhanced the responsiveness of myotubes to external electrical stimulations. These results indicate that micropatterning myoblasts with the MPC polymer is a simple and effective method to form functional myotube networks. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:220–225, 2015  相似文献   

12.
These studies were carried out to characterize the activation of rat striatal tyroxine hydroxylase produced by depolarization of the medial forebrain bundle and to evaluate the possible role of cyclic AMP as a mediator of this activation. The enzymatic properties of tyrosine hydroxylase following in vivo depolarization were compared to those produced by treatment of striatal synaptosomes with dibutyryl cyclic AMP (dbcAMP). Similar effects were observed with regard to enzyme distribution, altered sensitivity to dopamine-induced inhibition, and activity as a function of tyrosine concentration. However, differences between the two treatments were also apparent. First, treatment with dbcAMP shifted the pH optimum from 6.2 to 7.0. In contrast, electrical stimulation decreased the rate of decline in activity as the pH was increased above the optimum, but did not shift the pH optimum. Second, plots of tyrosine hydroxylase activity versus cofactor concentration revealed two enzyme forms for both control and electrically stimulated preparations. However, dbcAMP treatment converted the enzyme to a single high affinity form. These results can be explained by one of the following: (1) cyclic AMP is the sole mediator of enzyme activation, but does not produce a maximally activated enzyme following in vivo depolarization (2) cyclic AMP is only one of several mediators involved or (3) cyclic AMP is not involved in depolarization-induced activation, with activation occurring via the mediation of other intracellular messengers, such as calcium.  相似文献   

13.
The release of vasoactive intestinal polypeptide (VIP) induced by electrical field stimulation (EFS) of rabbit ileum was studied in vitro. EFS parallel to the muscularis propria caused a significant increase in VIP concentration in the buffer bathing the serosal surface of full-thickness ileum. This effect was blocked by 10?7 M tetrodotoxin. When circular and longitudinal muscle was removed, the amount of measurable VIP in the tissue decreased to about one-half that of full-thickness ileum, and EFS no longer caused release of VIP into the serosal or mucosal buffers. Our data indicate that EFS of rabbit ileum causes release of VIP, presumably from VIP-containing nerves present in the tissue. These results support the idea that VIP may be a physiological neuroregulator of intestinal function.  相似文献   

14.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

15.
16.
This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG).The tibialis anterior (TA) of ten subjects (age 23–35 years) was investigated during static contraction obtained through neuromuscular electrical stimulation. After potentiation, TA underwent two 15 s stimulation patterns: (a) frequency triangle (FT): 2 > 35 > 2 Hz at Vmax (amplitude providing full motor unit recruitment); (b) amplitude triangle (AT): Vmin > Vmax > Vmin (Vmin providing TA least mechanical response) at 35 Hz. 2 > 35 Hz or Vmin > Vmax as well as 35 > 2 Hz or Vmax > Vmin were defined as up-going ramp (UGR) and down-going ramp (DGR), respectively. TA torque, MMG and EMG were detected by a load cell, an optical laser distance sensor and a probe with two silver bar electrodes, respectively. For both FT and AT, only the two mechanical signals resulted always larger in DGR than in UGR, during AT extra-torque and extra-MMG were present even in the first 1/3 of the amplitude range where EMG data presented no significant differences between DGR and UGR.Our data suggest that extra-torque and extra-displacement are evident for both FT and AT, being mainly attributed to an intrinsic muscle property.  相似文献   

17.
Post-stroke sequelae includes loss functions, such as cognitive and sensory-motor which lead to emotional and social problems, reducing quality of life and well-being. The main aim of our study was to investigate the effects of transcranial laser photobiomodulation together with neuromuscular electrical stimulation (NMES) in post-stroke patients. We performed a clinical trial and an ex vivo study. For the clinical trial, hemiplegic patients were separated into two groups: Treated Group (TG): Hemiplegics treated with transcranial laser (on) associated with NMES (on) and; Placebo Group (PG): Hemiplegics treated with placebo transcranial laser (off) associated with NMES (on). The cluster prototype includes 12 diode laser beams (4 × 660 nm, 4 × 808 nm and 4 × 980 nm) with average power of 720 mW per cluster applied during one minute, leading to 43.2 J energy per cluster. Fifteen regions for all head were irradiated by cluster, leading to 648 J energy per session. The parameters of NMES of the paretic limbs to generate extension wrist and ankle dorsiflexion were symmetrical biphasic rectangular waveforms, 50 Hz frequency, 250 μs pulse duration, and adjustable intensity to maintain the maximum range of motion (amplitude between 0 and 150 mA). Our clinical trial showed improvement of cognitive function, pain relief, greater manual dexterity, enhancement of physical and social–emotional health which lead to better quality of life and well-being. There was also increased temperature in the treated regions with laser and NMES. For the ex vivo study, the distribution of infrared and red radiation after penetration through the cranium and hemihead of cadavers were showed. Therefore, transcranial laser photobiomodulation associated with NMES can be an important therapeutic resource for rehabilitation after stroke.  相似文献   

18.
19.
20.
The capability of electrical stimulation (ES) in promoting bone regeneration has already been addressed in clinical studies. However, its mechanism is still being investigated and discussed. This study aims to investigate the responses of macrophages (J774A.1) and preosteoblasts (MC3T3-E1) to ES and the faradic by-products from ES. It is found that pH of the culture media was not significantly changed, whereas the average hydrogen peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES, respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3 days of stimulation, which is consistent among two cell types. It is also found that Spp1 expression of macrophages was partially enhanced by faradic by-products. Osteogenic differentiation of preosteoblasts was not observed during the early stage of ES as the level of Runx2 expression remains unchanged. However, cell proliferation was impaired by the excessive current density from the electrodes, and also faradic by-products in the case of macrophages. This study shows that macrophages could respond to ES and potentially contribute to the bone formation alongside preosteoblasts. The upregulation of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the electrically stimulated osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号