首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Human cytomegalovirus (HCMV) remains one of the most common opportunistic infections causing disease following stem cell transplantation, despite the availability of anti-viral therapies. Adoptive immunotherapy has the potential to further aid in counteracting chronic viral reactivation and subsequent disease by restoring viral immunity through the transfer of virus-specific T cells from transplant donors to their recipients. Our study refines the production and purification of a recombinant HCMV protein containing two of the most immunodominant antigens (IE1 and pp65) for the generation of polyclonal HCMV-specific T cells. In doing so, a 6x His-tagged IE1-pp65 protein was generated using a serum-free baculovirus/insect cell expression system and soluble IE1-pp65 protein was subsequently purified using Ni-NTA affinity chromatography under stringent conditions to obtain a highly pure product. The ability of the recombinant IE1-pp65 protein to elicit a functional T cell mediated immune response was demonstrated by the vigorous reactivation and expansion of HLA-A2-restricted pp65(495-503)-specific CD8+ T cells. This recombinant IE1-pp65 protein can potentially generate a multitude of HLA-restricted HCMV-specific T cells, providing a better alternative to using costly overlapping peptides or HCMV lysates for expansion of T cells for use in adoptive immunotherapy strategies.  相似文献   

2.
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and HCMV infection in immunocompromised patients may trigger devastating disease. Cytotoxic lymphocytes control HCMV by releasing granzymes towards virus-infected cells. In mice, granzyme M (GrM) has a physiological role in controlling murine CMV infection. However, the underlying mechanism remains poorly understood. In this study, we showed that human GrM was expressed by HCMV-specific CD8+ T cells both in latently infected healthy individuals and in transplant patients during primary HCMV infection. We identified host cell heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a physiological GrM substrate. GrM most efficiently cleaved hnRNP K in the presence of RNA at multiple sites, thereby likely destroying hnRNP K function. Host cell hnRNP K was essential for HCMV replication not only by promoting viability of HCMV-infected cells but predominantly by regulating viral immediate-early 2 (IE2) protein levels. Furthermore, hnRNP K interacted with IE2 mRNA. Finally, GrM decreased IE2 protein expression in HCMV-infected cells. Our data suggest that targeting of hnRNP K by GrM contributes to the mechanism by which cytotoxic lymphocytes inhibit HCMV replication. This is the first evidence that cytotoxic lymphocytes target host cell proteins to control HCMV infections.  相似文献   

3.
Background aimsIn the absence of a protective immune response, human cytomegalovirus (HCMV) infection remains a life-threatening complication after allogeneic stem cell transplantation (SCT), especially in recipients of grafts from HCMV-seronegative donors. After allogeneic SCT from a seronegative donor, prolonged and severe immune deficiency often leads to infectious complications. Vaccination with antigen-loaded dendritic cells (DC) has been shown to be a potent approach for the induction of antigen-specific cytotoxic T-cell responses in vivo. For protection from subsequent HCMV reactivation, a sustained immune response is necessary, including antigen-specific CD4+ T cells.MethodsWe report the case of an 18-year-old girl with high-risk acute lymphoblastic leukemia that received an allogeneic SCT in CR2. After an HCMV infection, the graft was rejected and she received a second transplant from an HLA-mismatched, HCMV-seronegative family donor. She was treated with pp65-pulsed monocyte-derived DC at day 200 post-SCT, using a recombinant pp65 protein. Until day 200 post-SCT, HCMV reactivated six times with emerging viral resistance to antiviral chemotherapy.ResultsAfter vaccination with protein-pulsed DC, an induction and expansion of HCMV-specific Thelper cells and cytotoxic T lymphocytes was observed, associated with a sustained clearance of the HCMV viremia. Antiviral treatment could be tapered without recurrence of viremia within the first year post-SCT.Conclusionspp65-pulsed DC could induce antigen-specific T-cell responses even after a SCT from an HCMV-seronegative donor. After vaccination with pp65-pulsed DC, a sustained antigen-specific T-cell response prevented concurrent HCMV viremia. Emergence of antigen-specific Thelper cells may be essential for a sustained, functional T-cell response post-SCT.  相似文献   

4.
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.  相似文献   

5.
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.  相似文献   

6.
The role of cellular immunity in vaccine protection against FIV infection was evaluated using adoptive cell transfer studies. Specific-pathogen-free cats received two adoptive transfers of washed blood cells from either vaccinated or unvaccinated donors with varying MHC compatibility at 1-week intervals, and a homologous FIV(Pet) challenge 1 day after the first adoptive transfer. FIV-specific CTL, IFN-gamma production, and proliferation responses were detected in the PBMC from the vaccinated donors. Seven of eleven (64%) recipients of cells from half-matched/vaccinated donors remained negative for FIV-antibodies after FIV challenge and four of those were completely protected. Two of two recipients of cells from MHC-identical/vaccinated donors were completely protected. All recipients of cells from unrelated/vaccinated, half-matched/unvaccinated, or unrelated/unvaccinated donors were unprotected. Thus, protection mediated by adoptive transfer of immunocytes from vaccinated cats was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with FIV-specific CTL and T-helper activities.  相似文献   

7.
Professional APC play a central role in generating antiviral CD8(+) CTL immunity. However, the fate of such APC following interaction with these same CTL remains poorly understood. We have shown previously that prolonged Ag presentation persists in the presence of a strong CTL response following HSV infection. In this study, we examined the mechanism of survival of APC in vivo when presenting an immunodominant determinant from HSV. We show that transferred peptide-labeled dendritic cells were eliminated from draining lymph nodes in the presence of HSV-specific CTL. Maturation of dendritic cells with LPS or anti-CD40 before injection protected against CTL lysis in vivo. Furthermore, endogenous APC could be eliminated from draining lymph nodes early after HSV infection by adoptive transfer of HSV-specific CTL, yet the cotransfer of significant virus-specific CD4(+) T cell help promoted prolonged Ag presentation. This suggests that Th cells may assist in prolonging class I-restricted Ag presentation, potentially enhancing CTL recruitment and allowing more efficient T cell priming.  相似文献   

8.
Recombinant modified vaccinia Ankara- and peptide-based IFN-gamma ELISPOT assays were used to detect and measure human CMV (HCMV)-specific CD8(+) T cell responses to the pp65 (UL83) and immediate early protein 1 (IE1; UL123) gene products in 16 HCMV-infected infants and children. Age at study ranged from birth to 2 years. HCMV-specific CD8(+) T cells were detected in 14 (88%) of 16 children at frequencies ranging from 60 to >2000 spots/million PBMC. Responses were detected as early as 1 day of age in infants with documented congenital infection. Nine children responded to both pp65 and IE1, whereas responses to pp65 or IE1 alone were detected in three and two children, respectively. Regardless of the specificity of initial responses, IE1-specific responses predominated by 1 year of age. Changes in HCMV epitopes targeted by the CD8(+) T cell responses were observed over time; epitopes commonly recognized by HLA-A2(+) adults with latent HCMV infection did not fully account for responses detected in early childhood. Finally, the detection of HCMV-specific CD8(+) T cell responses was temporally associated with a decrease in peripheral blood HCMV load. Taken altogether, these data demonstrate that the fetus and young infant can generate virus-specific CD8(+) T cell responses. Changes observed in the protein and epitope-specificity of HCMV-specific CD8(+) T cells over time are consistent with those observed after other primary viral infections. The temporal association between the detection of HCMV-specific CD8(+) T cell responses and the reduction in blood HCMV load supports the importance of CD8(+) T cells in controlling primary HCMV viremia.  相似文献   

9.
The chemokine receptor CCR7 is a key factor in the coordinate migration of T cells and dendritic cells (DC) into and their localization within secondary lymphoid organs. In this study we investigated the impact of CCR7 on CD8(+) T cell responses by infecting CCR7(-/-) mice with lymphocytic choriomeningitis virus (LCMV). We found that the absence of CCR7 affects the magnitude of an antiviral CTL response during the acute phase, with reduced numbers of virus-specific CTL in all lymphoid and nonlymphoid organs tested. On the single cell level, CCR7-deficient CTL gained full effector function, such that antiviral protection in CCR7-deficient mice was complete, but delayed. Similarly, adoptive transfer experiments using DC from CCR7-deficient or competent mice for the priming of CCR7-positive or CCR7-negative CD8(+) T cells, respectively, revealed that ectopic positioning of DC and CTL outside organized T cell zones results in reduced priming efficacy. In the memory phase, CCR7-deficient mice maintained a stable LCMV-specific CTL population, predominantly in nonlymphoid organs, and rapidly mounted protective CTL responses against a challenge infection with a vaccinia virus recombinant for the gp33 epitope of LCMV. Taken together, the CCR7-dependent organization of the T cell zone does not appear to be a prerequisite for antiviral effector CTL differentiation and the sustenance of antiviral memory responses in lymphoid or peripheral tissues.  相似文献   

10.
Human cytomegalovirus (HCMV) infection is largely asymptomatic in the immunocompetent host, but remains a major cause of morbidity in immunosuppressed individuals. Using the recently described technique of staining antigen-specific CD8(+) T cells with peptide-HLA tetrameric complexes, we have demonstrated high levels of antigen-specific cells specific for HCMV peptides and show that this may exceed 4% of CD8(+) T cells in immunocompetent donors. Moreover, by staining with tetramers in combination with antibodies to cell surface markers and intracellular cytokines, we demonstrate functional heterogeneity of HCMV-specific populations. A substantial proportion of these are effector cytotoxic T lymphocytes, as demonstrated by their ability to lyse peptide-pulsed targets in "fresh" killing assays. These data suggest that the immune response to HCMV is periodically boosted by a low level of HCMV replication and that sustained immunological surveillance contributes to the maintenance of host-pathogen homeostasis. These observations should improve our understanding of the immunobiology of persistent viral infection.  相似文献   

11.
During virus infection, exogenous IL-4 strongly downregulates expression of antiviral cytokines and cytotoxic T lymphocyte (CTL) responses. In this study, we have employed a T cell receptor (TCR) transgenic system to more closely investigate the effect of IL-4 on CTL activity. This system involves mice transgenic for an H2-Kb restricted TCR recognising an ovalbumin (OVA)-specific peptide (OT-I mice), and recombinant vaccinia viruses expressing the gene for OVA (VV-OVA), or OVA together with IL-4 (VV-OVA-IL-4). Spleen cells from OT-I mice were adoptively transferred to irradiated C57BL/6 mice infected with VV-OVA or VV-OVA-IL-4. Five days following transfer, markedly stronger CTL activity was detected in VV-OVA- than in VV-OVA-IL-4-infected recipients. The reduction in CTL activity was associated with a reduction in the number of OVA-specific CD8+ T cells. Proliferation of cells from VV-OVA-IL-4-infected recipients was dramatically reduced, and this is a likely explanation for the IL-4-mediated reduction in the total number of OVA-specific cells and the reduced cytotoxic activity. On a per cell basis, the production of IFNgamma and cytotoxic activity of OVA-specific CD8+ cells was not influenced by IL-4. Taken together, our results indicate that the reduction in CTL activity by exogenous IL-4 is due to a reduced number of antigen-specific effectors, and does not involve a downregulation of effector function of these cells.  相似文献   

12.
Human cytomegalovirus (HCMV) is a large DNA virus that is well equipped to evade host immune responses and able to establish lifelong latency. It is able to modulate both innate and adaptive immune reactivity, and has multiple effects on the cell cycle and apoptosis. It is a major opportunistic pathogen in immunocompromised hosts. Reactivation of latent virus may re-stimulate memory T-cell responses that are sufficient to re-establish control over viral replication if the degree of immune suppression is not too great. Following allogeneic transplantation immune responses are often inadequate resulting in progressive tissue damage manifesting as over HCMV disease that usually presents as pneumonitis, colitis or hepatitis. Currently available antiviral pharmacotherapies are limited by toxicities and lack of efficacy in established HCMV disease. Efforts have therefore focused on molecular diagnostic surveillance protocols that allow earlier intervention, and the development of adoptive immunotherapeutic strategies to hasten host immune reconstruction.  相似文献   

13.
Different protein- or DNA-based vaccination techniques are available that prime potent humoral and cellular, T1 or T2 immune responses to the hepatitis B surface Ag (HBsAg) in mice. T1 and T2 are immune responses with isotype profile indicating Th1 and Th2 immunoregulation. We tested whether HBsAg-specific immune responses can be established in transgenic mice that express HBsAg in the liver (HBs-tg mice) using either these different vaccination techniques or an adoptive transfer system. HBsAg-specific responses could not be primed in HBs-tg mice with the established, potent vaccine delivery techniques. In contrast, adoptive transfers of T1- and T2-type HBsAg-immune spleen cells into congenic HBs-tg hosts (that were not conditioned by pretreatment) suppressed HBsAg antigenemia and gave rise to HBsAg-specific serum Ab titers. The establishment of continuously rising anti-HBsAg serum Ab levels with alternative isotype profiles (reflecting T1 or T2 polarization) in transplanted HBs-tg hosts required donor CD4+ T cell-dependent restimulation of adoptively transferred immune cells by transgene-derived HBsAg. Injections of HBsAg-specific Abs into HBs-tg mice did not establish stable humoral immunity. The expanding T1 or T2 immune responses to HBsAg in HBs-tg hosts did not suppress transgene-directed HBsAg expression in the liver and did not induce liver injury. In addition to priming functional antiviral effector cells, the conditioning of the liver microenvironment to enable delivery of antiviral effector functions to this organ are therefore critical for effective antiviral defense. A major challenge in the development of a therapeutic vaccine against chronic hepatitis B or C virus infection is thus the efficient targeting of specifically induced immune effector specificities to the liver.  相似文献   

14.
Peripheral blood mononuclear cells harvested from healthy adults seropositive for human cytomegalovirus (HCMV) and cultured with laboratory strain AD-169 demonstrated human leukocyte antigen-restricted and HCMV-specific killing on target cells infected with either HCMV laboratory strain AD-169 or recent low-passage HCMV isolates. These results indicated that the determinants recognized by cytotoxic T lymphocytes (CTLs) are shared among different strains of HCMV. However, when low-passage isolates, rather than high-passage AD-169 virions, were used to stimulate CTL activity, the lytic response was significantly lower against all targets. Mixing of AD-169 and low-passage HCMV isolates induced low CTL activity. Collectively, the findings suggest that low-passage HCMV isolates have dual effects--antigenic stimulation and immunosuppression--whereas laboratory strain AD-169 is primarily immunogenic. The study of several recent isolates indicated that they varied in their ratio of immunostimulation to suppression, that infectious virus was necessary to produce suppression, and that suppressive isolates did not have to be present at the initiation of culture to exert their suppressive effects.  相似文献   

15.
Cytotoxic T lymphocytes (CTL) appear to play an important role in the control of human cytomegalovirus (HCMV) in the normal virus carrier: previous studies have identified peripheral blood CD8+ CTL specific for the HCMV major immediate-early gene product (IE1) and more recently, by bulk culture and cloning techniques, have identified CTL specific for a structural gene product, the lower matrix protein pp65. In order to determine the relative contributions of CTL which recognize the HCMV proteins IE1, pp65, and glycoprotein B (gB) to the total HCMV-specific CTL response, we have used a limiting-dilution analysis system to quantify HCMV-specific CTL precursors with different specificities, allowing the antigenic specificity of multiple short-term CTL clones to be assessed, in a group of six healthy seropositive donors. All donors showed high frequencies of HCMV-specific major histocompatibility complex-restricted CTL precursors. There was a very high frequency of CTL specific for pp65 (lower matrix protein); IE1-specific CTL were also detectable at lower frequencies in three of five donors, while CTL directed to gB were undetectable. A pp65 gene deletion mutant of HCMV was then used to estimate the contribution of pp65-specific CTL to the total HCMV-specific CTL response; this showed that between 70 and 90% of all CTL recognizing HCMV-infected cells were pp65 specific. Analysis of the peptide specificity of pp65-specific CTL showed that some donors have a highly focused response recognizing a single peptide; the T-cell receptor Vbeta gene usage in these two donors was shown to be remarkably restricted, with over half of the responding CD8+ T cells utilizing a single Vbeta gene rearrangement. Other subjects recognized multiple pp65 peptides: nine new pp65 CTL peptide epitopes were defined, and for five of these the HLA-presenting allele has been identified. All four of the HLA A2 donors tested in this study recognized the same peptide. This apparent domination of the CTL response to HCMV during persistent infection by a single structural protein, irrespective of major histocompatibility complex haplotype, is not clearly described for other persistent virus infections, and the mechanism requires further investigation.  相似文献   

16.
Immunocompromised individuals are at high risk for life-threatening diseases, especially those caused by cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus. Conventional therapeutics are primarily active only against CMV, and resistance is frequent. Adoptive transfer of polyclonal cytotoxic T lymphocytes (CTLs) specific for CMV or EBV seems promising, but it is unclear whether this strategy can be extended to adenovirus, which comprises many serotypes. In addition, the preparation of a specific CTL line for each virus in every eligible individual would be impractical. Here we describe genetic modification of antigen-presenting cell lines to facilitate the production of CD4(+) and CD8(+) T lymphocytes specific for CMV, EBV and several serotypes of adenovirus from a single cell culture. When administered to immunocompromised individuals, the single T lymphocyte line expands into multiple discrete virus-specific populations that supply clinically measurable antiviral activity. Monoculture-derived multispecific CTL infusion could provide a safe and efficient means to restore virus-specific immunity in the immunocompromised host.  相似文献   

17.
Several animal models have been developed in which the adoptive transfer of specifically immune syngeneic T cells has been shown to mediate the eradication of established tumors. In adoptive chemoimmunotherapy (ACIT) of disseminated FBL leukemia with cyclophosphamide and immune T cells, the major effector T cell has been shown to be a noncytolytic Lyt-1+2- T cell that mediates its therapeutic effect without the participation of CTL. Because studies in other models have suggested that CTL can mediate an anti-tumor effect, the efficacy of Lyt-2+ T cells rendered highly cytolytic before adoptive transfer in ACIT of disseminated FBL was examined. The results demonstrated that such CTL had a detectable but limited therapeutic effect in the treatment of FBL. Because this limited activity of transferred purified CTL might have reflected a requirement for helper T cells to produce IL 2 for promotion of the in vivo survival and proliferation of the CTL, the effect of administering IL 2 to tumor-bearing hosts after transfer of CTL was examined. A dose of IL 2 previously shown to induce in vivo proliferation of transferred T cells rendered CTL that were minimally effective alone curative in ACIT of FBL leukemia. Thus, either lymphokine-producing T cells or the lymphokines produced by these cells are necessary for the full expression of the in vivo therapeutic potential of CTL.  相似文献   

18.
The cytotoxic T-lymphocyte response against lymphocytic choriomeningitis virus (LCMV) in BALB/c mice is predominantly directed against a single, Ld-restricted epitope in the viral nucleoprotein (residues 118 to 126). To investigate whether any Kd/Dd-restricted responses were activated but did not expand during the primary response, we used a BALB/c mutant, BALB/c-H-2dm2, which does not express the Ld molecule. Splenocytes from LCMV-infected BALB/c mice were transferred into irradiated BALB/c-H-2dm2 mice and rechallenged with LCMV. Thus, they were exposed to an antigenic stimulus without the involvement of the immunodominant Ld-restricted epitope. In this adoptive transfer model, the donor splenocytes protected the recipient mice against chronic LCMV infection by mounting a potent Kd- and/or Dd-restricted secondary antiviral response. Analysis of a panel of Kd binding LCMV peptides revealed that residues 283 to 291 from the viral glycoprotein (GP(283-291)) comprise a major new epitope in the adoptive transfer model. Because the donor splenocytes were first activated during the primary infection in BALB/c mice, the GP(283-291) epitope is a subdominant epitope in BALB/c mice that becomes dominant after rechallenge in BALB/c-H-2dm2 mice. This study makes two points. First, it shows that subdominant CTL responses can be protective, and second, it provides a general experimental approach for uncovering subdominant CTL responses in vivo. This strategy can be used to identify subdominant T-cell responses in other systems.  相似文献   

19.
The question of whether virus-induced immunosuppression includes the antibody response against the infecting virus itself was evaluated in a model situation. Transgenic mice expressing the T-cell receptor (TCR) specific for peptide 32-42 of lymphocytic choriomeningitis virus (LCMV) glycoprotein 1 presented by Db reacted with a strong transgenic cytotoxic T-lymphocyte (CTL) response starting on day 3 after infection with a high dose (10(6) PFU intravenously [i.v.]) of the WE strain of LCMV (LCMV-WE); LCMV-specific antibody production in the spleen was suppressed in these mice. Low-dose (10(2) PFU i.v.) infection resulted in an antiviral antibody response comparable to that of the transgene-negative littermates. The induction of suppression of LCMV-specific antibody responses was specifically mediated by CD8+ TCR transgenic CTLs, since the LCMV-8.7 variant virus (which is not recognized by transgenic TCR-expressing CTLs because of a point mutation) did not induce suppression. In addition, treatment with CD8 monoclonal antibody in vivo abrogated suppression. Once suppression had been established, it was found to be nonspecific. The abrogation of antibody responses depended on the relative kinetics of the antibody response involved and the kinetics of the anti-LCMV CTL response. Analysis of T- and B-cell subpopulations showed no significant changes, but immunohistochemical analysis of spleens revealed extensive destruction of follicular organization in lymphoid tissue by day 4 in transgenic mice infected with LCMV-WE but not in those infected with the CTL escape mutant LCMV-8.7. Impairment of antigen presentation rather than of T or B cells was also suggested by adoptive transfer experiments, showing that transferred infected macrophages may improve the anti-LCMV antibody response in LCMV-immunosuppressed transgenic recipients; also, T and B cells from suppressed transgenic mice did respond in irradiated and virus-infected nontransgenic mice with antibody formation to LCMV. Such virus-triggered, T-cell-mediated immunopathology causing the suppression of B cells and of protective antibody responses, including those against the infecting virus itself, may permit certain viruses to establish persistent infections.  相似文献   

20.
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号