首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Although recent studies have extended our understanding of agrin's function during development, its function in the central nervous system (CNS) is not clearly understood. To address this question, zebrafish agrin was identified and characterized. Zebrafish agrin is expressed in the developing CNS and in nonneural structures such as somites and notochord. In agrin morphant embryos, acetylcholine receptor (AChR) cluster number and size on muscle fibers at the choice point were unaffected, whereas AChR clusters on muscle fibers in the dorsal and ventral regions of the myotome were reduced or absent. Defects in the axon outgrowth by primary motor neurons, subpopulations of branchiomotor neurons, and Rohon-Beard sensory neurons were also observed, which included truncation of axons and increased branching of motor axons. Moreover, agrin morphants exhibit significantly inhibited tail development in a dose-dependent manner, as well as defects in the formation of the midbrain-hindbrain boundary and reduced size of eyes and otic vesicles. Together these results show that agrin plays an important role in both peripheral and CNS development and also modulates posterior development in zebrafish.  相似文献   

3.
Results of biochemical and electrophysiological experiments allowing researchers to identify non-quantal release of acetylcholine (ACh), in addition to quantal release, from motor nerve endings, are discussed in the lecture. Based on the analysis of our own data and publications of other experimenters on the dependence of non-quantal secretion on the composition of the ion milieu, sensitivity of this phenomenon to different physiologically active compounds, and peculiarities of its temperature dependence, the authors conclude that non-quantal secretion of the transmitter is an active transport process, and not a passive leakage of ACh from the cytoplasm of the nerve terminal. It is hypothesized that a high-affinity system of choline uptake can play the role of the ACh carrier through the presynaptic membrane. The involvement of non-quantal release in the control of electrogenesis in the muscle fiber and the relation between processes of quantal and non-quantal secretion of the transmitter providing adequate functioning of the nerve terminal in the resting state and in the course of long-lasting high-frequency rhythmic activity are described. Data on the ability of glutamate and nitric oxide to selectively modulate this type of neurosecretion are analyzed. The possible role of non-quantal secretion of ACh in pathogenesis of intoxications of ACh esterase is discussed. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 352–363, July–October, 2007.  相似文献   

4.
The degradation rates of acetylcholine receptors (AchRs) were evaluated at the neuromuscular junction during and just after reinnervation of denervated muscles. When mouse sternomastoid muscles are denervated by multiple nerve crush, reinnervation begins 2-4 days later and is complete by day 7-9 after the last crush. In fully innervated muscles, the AChR degradation rate is stable and slow (t1/2 approximately 10 days), whereas after denervation the newly inserted receptors degrade rapidly (t1/2 approximately 1.2 days). The composite profile of degradation, which a mixture of the stable and the rapid receptors would give, is not observed during reinnervation. Instead, the receptors inserted between 2.5 and 7.5 days after the last crush all have an intermediate degradation rate of t1/2 approximately 3.7 days with standard error +/- 0.3 days. The total receptor site density at the endplate was evaluated during denervation and during reinnervation. As predicted theoretically, the site density increased substantially, but temporarily, after denervation. An analogous deleterious substantial decrease in density would be expected during reinnervation, without the intermediate receptor. This decrease is not observed, however, because of a large insertion rate at intermediate times (3000 +/- 700 receptor complexes per micro m2 per day). The endplate density of receptors thus remains relatively constant.  相似文献   

5.
Agrin induces the formation of specializations on chick myotubes in culture at which several components of the postsynaptic apparatus accumulate, including acetylcholine receptors (AChRs). Agrin also induces AChR phosphorylation. Several lines of evidence suggest that agrininduced phosphorylation of tyrosine residues in the β subunit of the AChR is an early step in receptor aggregation: agrin-induced phosphorylation and aggregation have the same dose dependence; treatments that prevent aggregation block phosphorylation; phosphorylation begins before any detectable change in receptor distribution, reaches a maximum hours before aggregation is complete, and declines slowly together with the disappearance of aggregates after agrin is withdrawn; agrin slows the rate at which receptors are solubilized from intact myotubes by detergent extraction; and the change in receptor extractability parallels the change in phosphorylation. A model for agrin-induced AChR aggregation is presented in which phosphorylation of AChRs by an agrin-activated protein tyrosine kinase causes receptors to become attached to the cytoskeleton, which reduces their mobility and detergent extractability, and leads to the accumulation of receptors in the vicinity of the activated kinase, forming an aggregate. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
The effect of hyperphenylalaninemia on the development of the muscarinic acetylcholine receptor in rat cerebrum has been studied. Rats were subjected to the hyperphenylalaninemic regimen as of 5 days of age. A gradual and steady decrease in the number of binding sites forl-[3H]quinuclidinylbenzilate was observed, with the white matter more affected than the gray matter. A return to normal blood phenylalanine levels after the age of 21 days does not lead to an increase in this number of binding sites.  相似文献   

7.
The formation of the neuromuscular junction is characterized by the progressive accumulation of nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane facing the nerve terminal, induced predominantly through the agrin/muscle-specific kinase (MuSK) signaling cascade. However, the cellular mechanisms linking MuSK activation to AChR clustering are still poorly understood. Here, we investigate whether lipid rafts are involved in agrin-elicited AChR clustering in a mouse C2C12 cell line. We observed that in C2C12 myotubes, both AChR clustering and cluster stability were dependent on cholesterol, because depletion by methyl-beta-cyclodextrin inhibited cluster formation or dispersed established clusters. Importantly, AChR clusters resided in ordered membrane domains, a biophysical property of rafts, as probed by Laurdan two-photon fluorescence microscopy. We isolated detergent-resistant membranes (DRMs) by three different biochemical procedures, all of which generate membranes with similar cholesterol/GM1 ganglioside contents, and these were enriched in several postsynaptic components, notably AChR, syntrophin, and raft markers flotillin-2 and caveolin-3. Agrin did not recruit AChRs into DRMs, suggesting that they are present in rafts independently of agrin activation. Consequently, in C2C12 myotubes, agrin likely triggers AChR clustering or maintains clusters through the coalescence of lipid rafts. These data led us to propose a model in which lipid rafts play a pivotal role in the assembly of the postsynaptic membrane at the neuromuscular junction upon agrin signaling.  相似文献   

8.
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin‐1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin‐coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co‐localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 551–565, 2016  相似文献   

9.
Gymnodimines (GYMs) are phycotoxins exhibiting unusual structural features including a spirocyclic imine ring system and a trisubstituted tetrahydrofuran embedded within a 16-membered macrocycle. The toxic potential and the mechanism of action of GYM-A, highly purified from contaminated clams, have been assessed. GYM-A in isolated mouse phrenic hemidiaphragm preparations produced a concentration- and time-dependent block of twitch responses evoked by nerve stimulation, without affecting directly elicited muscle twitches, suggesting that it may block the muscle nicotinic acetylcholine (ACh) receptor (nAChR). This was confirmed by the blockade of miniature endplate potentials and the recording of subthreshold endplate potentials in GYM-A paralyzed frog and mouse isolated neuromuscular preparations. Patch-clamp recordings in Xenopus skeletal myocytes revealed that nicotinic currents evoked by constant iontophoretical ACh pulses were blocked by GYM-A in a reversible manner. GYM-A also blocked, in a voltage-independent manner, homomeric human alpha7 nAChR expressed in Xenopus oocytes. Competition-binding assays confirmed that GYM-A is a powerful ligand interacting with muscle-type nAChR, heteropentameric alpha3beta2, alpha4beta2, and chimeric alpha7-5HT(3) neuronal nAChRs. Our data show for the first time that GYM-A broadly targets nAChRs with high affinity explaining the basis of its neurotoxicity, and also pave the way for designing specific tests for accurate GYM-A detection in shellfish samples.  相似文献   

10.
Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.  相似文献   

11.
The dystrophin-associated protein (DAP) complex spans the sarcolemmal membrane linking the cytoskeleton to the basement membrane surrounding each myofiber. Defects in the DAP complex have been linked previously to a variety of muscular dystrophies. Other evidence points to a role for the DAP complex in formation of nerve-muscle synapses. We show that myotubes differentiated from dystroglycan-/- embryonic stem cells are responsive to agrin, but produce acetylcholine receptor (AChR) clusters which are two to three times larger in area, about half as dense, and significantly less stable than those on dystroglycan+/+ myotubes. AChRs at neuromuscular junctions are similarly affected in dystroglycan-deficient chimeric mice and there is a coordinate increase in nerve terminal size at these junctions. In culture and in vivo the absence of dystroglycan disrupts the localization to AChR clusters of laminin, perlecan, and acetylcholinesterase (AChE), but not rapsyn or agrin. Treatment of myotubes in culture with laminin induces AChR clusters on dystroglycan+/+, but not -/- myotubes. These results suggest that dystroglycan is essential for the assembly of a synaptic basement membrane, most notably by localizing AChE through its binding to perlecan. In addition, they suggest that dystroglycan functions in the organization and stabilization of AChR clusters, which appear to be mediated through its binding of laminin.  相似文献   

12.
At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR β subunit, as agrin and pervandate had no effect on receptor half‐life in AChR‐β3F/3F muscle cells, which have targeted mutations of the β subunit cytoplasmic tyrosines. Moreover, in wild type AChR‐β3Y muscle cells, we found a linear relationship between average receptor half‐life and the percentage of AChR with phosphorylated β subunit, with half‐lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half‐life in AChR‐β3Y myotubes in the absence of clustering, and agrin failed to increase receptor half‐life in AChR‐β3F/3F myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of βY390 as mutation of this residue abolished β subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR‐β3Y but not AChR‐β3F/3F myotubes. Together, these findings identify an unexpected role for agrin‐induced phosphorylation of βY390 in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half‐life of AChR at adult NMJs. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 399–410, 2013  相似文献   

13.
The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) are highly expressed at the vertebrate neuromuscular junction (NMJ) where they are required for muscle activation. Understanding the factors that underlie NMJ development is critical for a full understanding of muscle function. In this study we performed whole cell and outside‐out patch clamp recordings, and single‐cell RT‐qPCR from zebrafish red and white muscle to examine the properties of nAChRs during the first 5 days of development. In red fibers miniature endplate currents (mEPCs) exhibit single exponential time courses at 1.5 days postfertilization (dpf) and double exponential time courses from 2 dpf onwards. In white fibers, mEPCs decay relatively slowly, with a single exponential component at 1.5 dpf. By 2 and 3 dpf, mEPC kinetics speed up, and decay with a double exponential component, and by 4 dpf the exponential decay reverts back to a single component. Single channel recordings confirm the presence of two main conductance classes of nAChRs (~45 pS and ~65 pS) in red fibers with multiple time courses. Two main conductance classes are also present in white fibers (~55 pS and ~73 pS), but they exhibit shorter mean open times by 5 dpf compared with red muscle. RT‐qPCR of mRNA for nicotinic receptor subunits supports a switch from γ to ε subunits in white fibers but not in red. Our findings provide a developmental profile of mEPC properties from red and white fibers in embryonic and larval zebrafish, and reveal previously unknown differences between the NMJs of these muscle fibers.© 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 916–936, 2016  相似文献   

15.
Agrin released from motor nerve terminals activates a muscle-specific receptor tyrosine kinase (MuSK) in muscle cells to trigger formation of the skeletal neuromuscular junction. A key step in synaptogenesis is the aggregation of acetylcholine receptors (AChRs) in the postsynaptic membrane, a process that requires the AChR-associated protein, rapsyn. Here, we mapped domains on MuSK necessary for its interactions with agrin and rapsyn. Myotubes from MuSK(-/)- mutant mice form no AChR clusters in response to agrin, but agrin-responsiveness is restored by the introduction of rat MuSK or a Torpedo orthologue. Thus, MuSK(-/)- myotubes provide an assay system for the structure-function analysis of MuSK. Using this system, we found that sequences in or near the first of four extracellular immunoglobulin-like domains in MuSK are required for agrin responsiveness, whereas sequences in or near the fourth immunoglobulin-like domain are required for interaction with rapsyn. Analysis of the cytoplasmic domain revealed that a recognition site for the phosphotyrosine binding domain-containing proteins is essential for MuSK activity, whereas consensus binding sites for the PSD-95/Dlg/ZO-1-like domain-containing proteins and phosphatidylinositol-3-kinase are dispensable. Together, our results indicate that the ectodomain of MuSK mediates both agrin- dependent activation of a complex signal transduction pathway and agrin-independent association of the kinase with other postsynaptic components. These interactions allow MuSK not only to induce a multimolecular AChR-containing complex, but also to localize that complex to a primary scaffold in the postsynaptic membrane.  相似文献   

16.
During neuromuscular junction formation, agrin secreted from motor neurons causes muscle cell surface acetylcholine receptors (AChRs) to cluster at synaptic sites by mechanisms that are insufficiently understood. The Rho family of small guanosine triphosphatases (GTPases), including Rac and Cdc42, can mediate focal reorganization of the cell periphery in response to extracellular signals. Here, we investigated the role of Rac and Cdc42 in coupling agrin signaling to AChR clustering. We found that agrin causes marked muscle-specific activation of Rac and Cdc42 in differentiated myotubes, as detected by biochemical measurements. Moreover, this activation is crucial for AChR clustering, since the expression of dominant interfering mutants of either Rac or Cdc42 in myotubes blocks agrin-induced AChR clustering. In contrast, constitutively active Rac and Cdc42 mutants cause AChR to aggregate in the absence of agrin. By indicating that agrin-dependent activation of Rac and Cdc42 constitutes a critical step in the signaling pathway leading to AChR clustering, these findings suggest a novel role for these Rho-GTPases: the coupling of neuronal signaling to a key step in neuromuscular synaptogenesis.  相似文献   

17.
Abstract  Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A–C present in α subunits together with loops D–F present in either non-α subunits or homomer-forming α subunits. Although Y151 in loop B has been identified as important in agonist binding, various residues at the 151-site are found among vertebrate and invertebrate nAChR α subunits, such as F151. In Xenopus oocytes expressing Nlα1 or Nlα1Y151F plus rat β2, Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine, but not imidacloprid, including the decrease of I max, the increase of EC50 (the concentration causing 50% of the maximum response) and the fast time-constant of decay (τf). By comparisons of residue structure, the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between Nlα1/β2 nAChRs and acetylcholine, and the phenyl group to be important between Nlα1/β2 nAChRs and imidacloprid.  相似文献   

18.
Zebrafish embryos demonstrate robust swimming behavior, which consists of smooth, alternating body bends. In contrast, several motility mutants have been identified that perform sustained, bilateral trunk muscle contractions which result in abnormal body shortening. Unlike most of these mutants, accordion (acc)dta5 demonstrates a semidominant effect: Heterozygotes exhibit a distinct but less severe phenotype than homozygotes. Using molecular‐genetic mapping and candidate gene analysis, we determined that accdta5 mutants harbor a novel mutation in atp2a1, which encodes SERCA1, a calcium pump important for muscle relaxation. Previous studies have shown that eight other acc alleles compromise SERCA1 function, but these alleles were all reported to be recessive. Quantitative behavioral assays, complementation testing, and analysis of molecular models all indicate that the accdta5 mutation diminishes SERCA1 function to a greater degree than other acc alleles through either haploinsufficient or dominant‐negative molecular mechanisms. Since mutation of human ATP2A1 results in Brody disease, an exercise‐induced impairment of muscle relaxation, accdta5 mutants may provide a particularly sensitive model of this disorder. genesis, 48:354–361, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Purified acetylcholine receptor reconstituted into liposomes catalyzes carbamylcholine-dependent ion flux [10]. An endogenous protease activated by Ca2+ gives rise to an acrylamide gel pattern of the receptor with the 40,000-dalton subunit apparently as the major component. Exogenous proteases nick the proteins so extensively that the acrylamide gel pattern reveals polypeptides of 20,000 daltons or less. In either case the receptor sediments at 9S, indicating that the polypeptide chains associated. Moreover, the nicked receptors bind α-bungarotoxin and catalyze carbamylcholine-dependent ion flux after reconstitution.  相似文献   

20.
The immunological structure of the acetylcholine receptor (AChR) from the electric organ of Torpedo californica was studied using a large number of monoclonal antibodies which were initially selected for their abilities to bind to intact AChRs. The monoclonal antibodies were tested for their ability to bind to denatured AChR subunits labeled with 125I. Antibodies derived from rats immunized with individual denatured subunits or a mixture of subunits of Torpedo AChR reacted well in the assay. A much smaller proportion of antibodies derived from rats immunized with native Torpedo AChR or native AChR from Electrophorus electricus electric organ, bovine muscle, or human muscle reacted with denatured subunits of Torpedo AChR. Many monoclonal antibodies reacted with more than one subunit, but they always reacted best with the subunit used for immunization. Those monoclonal antibodies that bound to intact subunits were mapped more precisely by their ability to bind characteristic fragments of each subunit generated by proteolysis with Staphylococcal V8 protease. These fragments were analyzed by SDS polyacrylamide gel electrophoresis, and monoclonal antibodies that precipitated the same fragment pattern were placed in groups. By this method, we define a minimum of 28 determinants on Torpedo AChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号