首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two buried carboxyls (Asp-102 and Asp-194) in both chymotrypsin and chymotrypsinogen are ionized at pH values greater than 4.2 and may be ionized even as low as pH 3.This was demonstrated by coupling most of the surface carboxyis of the proteins by a carbodi-imide with glycinamide or semicarbazide to diminish the groups ionizing at low pH and then titrating the proton uptake on denaturation by sodium dodecyl sulphate between pH 3.0 and 4.6. At pH values greater than 4.2 all unblocked carboxyls are ionized. The proton uptake during the conformational change on denaturation was determined by a stopped-flow procedure and found to be about 2H+/mol between pH 3.0 and 3.6. The rate constant for the uptake of protons is the same as that for the exposure of tryptophan and lies in the tens of millisecond region.The buried negative charge at the active site appears to be mainly on Asp-102 rather than on His-57, the pKa of which must be raised by the buried charge. This enhances its efficacy as a base catalyst in the “charge relay system”.The presence of an intact charge relay system in the inactive zymogen illustrates the importance of stereochemical fit between enzyme and substrate. Enzyme catalysis could hardly be mediated by a catalyst which is uniquely reactive in the absence of correct enzyme-substrate orientation as this would be inconsistent with its specificity.  相似文献   

2.
3.
4.
An 873 base-pair DNA sequence from the rII region of bacteriophage T4 is presented. The sequence encodes 139 carboxyl-terminal amino acids of rIIA and the amino-terminal 146 amino acids of rIIB. Eleven base-pairs separate the rIIA stop codon (UAA) and the rIIB AUG.An extensive genetic map is superimposed on the DNA sequence, showing the deduced locations of many of the mutations (base-pair substitutions, frameshifts, deletions) found in previous rII genetic studies.  相似文献   

5.
6.
The naked core of bacteriophage T4 was isolated ex vivo after cross-linking with either glutaraldehyde or dithiobis(succinimidyl propionate). The isolated particles appeared to be morphologically identical to the cores found in thin sections, to those demonstrated in in situ lysis preparations, and to core structures assembled in vitro. Treatment with glutaraldehyde provided core particles which were morphologically well preserved, whereas dithiobis(succinimidyl propionate)-induced cross-linking was reversible and allowed analysis of the protein composition of the isolated particles. The identity of the reversibly cross-linked particles with those obtained after irreversible cross-linking was suggested by their morphology and their similar sedimentation behavior. Immunolabeling confirmed the structural presence of the main core protein in both structures. Gel electrophoresis of reversibly cross-linked cores revealed the essential head proteins gp22, gp67, and gp21, the three internal proteins IPI, IPII, and IPIII, and a 17K protein.  相似文献   

7.
We have studied the aberrant tubular polyheads of bacteriophages T4D and T2L as a model system for capsid maturation. Six different types of polyhead surface lattice morphology, and the corresponding protein compositions are reported and discussed. Using in vitro systems to induce transformations between particular polyhead types, we have deduced that the structural classes represent successive points in a transitional pathway. In the first step, coarse polyheads (analogous to the prohead τ-particle) are proteolytically cleaved by a phagecoded protease, a fragment of the gene 21 product. This cleavage of P23 to P231 induces a co-operative lattice transformation in the protein of the surface shell, to a conformation equivalent to that of T2L giant phage capsids. These polyheads (derived either from T4 or T2L lysates) can accept further T4-coded proteins. In doing so, they pass through intermediate structural states, eventually reaching an end point whose unit cell morphology is indistinguishable from that of the giant T4 capsids. At least one protein (called soc (Ishii & Yanagida, 1975)) is bound stoichiometrically to P231 in the end-state conformation. The simulation of several aspects of capsid maturation (cleavage of P23 to P231, stabilization, and lattice expansion) in the polyhead pathway suggest that it parallels the major events of phage T-even capsid maturation, decoupled from any involvement of DNA packaging.  相似文献   

8.
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.  相似文献   

9.
A new bacteriophage T4 gene has been identified and located between genes 20 and 21. This gene codes for PIP, a component of the prehead core and precursor to one of the two species of small, acidic peptides found inside the mature phage head. We have determined the DNA sequence of the gene. Both the DNA sequence and the amino acid sequence derived from it are unusual, and between them explain why suppressor-sensitive mutations in the gene have not been found using classical mutagenesis. The codon usage in this gene is highly non-random. In the accompanying paper we show that PIP is essential for T4 growth and assign its gene a number. 67, to indicate that fact.  相似文献   

10.
The baseplate of bacteriophage T4 is a complex structure containing at least 14 different structural proteins. It undergoes a transition from a hexagonal to a star-shaped configuration during infection of the host bacterial cell. We have used a combination of genetics and image processing of electron micrographs to analyse both the wild-type structure and a series of mutant structures lacking specific gene products. Besides describing the basic anatomy of the hexagon and star configurations, we have been able to locate the products of genes 9, 11 and 12.Gene 9 product occupies a peripheral position in hexagons and stars consistent with its providing a binding site for the long tail fibres. Gene 11 product in the hexagon forms the distal part of the tail pin, which folds out to form the point of the hexagram in the star configuration. Gene 12 product is visualized as an extended 350 Å fibre in stars and broken baseplates but appears to have a more compact configuration in hexagons and intact phage.We demonstrate the structural relationship between the hexagonal and starshaped configurations and show how the positions of the specific gene products alter as a result of the structural transition. We suggest a speculative model for the role of gene 9 and gene 12 products in triggering the rearrangement of the baseplate and tail contraction.  相似文献   

11.
Site-directed mutagenesis has been used to produce a T----A change at nucleotide 70 of phi X174 genome. This generates an am codon, TAG, in the gene K reading frame without affecting the amino acid, leucine, encoded by the overlapping gene A. The gene K mutant produces small plaques on su- hosts. It has an identical latent period, but a more reduced burst size than that of the wild-type phi X174. The reduced burst size in the gene K mutant suggests that the gene K protein, although not essential, has a role in increasing infectivity by increasing the burst size three- to sixfold.  相似文献   

12.
We have constructed derivatives of plasmid pMB9 carrying EcoRI digestion fragments of bacteriophage T4 DNA that code for late gene functions. When Escherichia coli strains carrying these plasmids are infected with T4 amber mutants, burst sizes up to 30% of the wild-type level are obtained. Single burst experiments imply that the phage progeny result from complementation and do not depend on marker rescue. By electrophoretic and immunological techniques, we have established that the cloned T4 late genes are transcribed and translated in uninfected cells. A serum blocking assay has been used to quantitate the levels of one of the T4 gene products, gp11, before and after T4 infection. Uninfected cells containing the cloned T4 gene 11 DNA have 0.1% and mini cells have 1% of the gp11 levels per unit protein found in cells late after T4 wild-type infection. There is little or no additional gp10 and gp11 formed from the cloned genes after T4 infection.  相似文献   

13.
Protein S is an abundant spore coat protein produced during fruiting body formation (development) of the bacterium Myxococcus xanthus. We have cloned the DNA which codes for protein S and have found that this DNA hybridizes to three protein S RNA species from developmental cells but does not hybridize to RNA from vegetative cells. The half-life of protein S RNA was found to be unusually long, about 38 minutes, which, at least in part, accounts for the high level of protein S synthesis observed during development. Hybridization of restriction fragments from cloned M. xanthus DNA to the developmental RNAs enabled us to show that M. xanthus has two directly repeated genes for protein S (gene 1 and gene 2) which are separated by about 10(3) base-pairs on the bacterial chromosome. To study the expression of the protein S genes in M. xanthus, eight M. xanthus strains were isolated with Tn5 insertions at various positions in the DNA which codes for protein S. The strains which contained insertions in gene 1 or between gene 1 and gene 2 synthesized all three protein S RNA species and exhibited normal levels of protein S on spores. In contrast, M. xanthus strains exhibited normal levels of protein S on spores. In contrast, M. xanthus strains with insertions in gene 2 had no detectable protein S on spores and lacked protein S RNA. Thus, gene 2 is responsible for most if not all of the production of protein S during M. xanthus development. M. xanthus strains containing insertions in gene 1, gene 2 or both genes, were found to aggregate and sporulate normally even though strains bearing insertions in gene 2 contained no detectable protein S. We examined the expression of gene 1 in more detail by constructing a fusion between the lacZ gene of Escherichia coli and the N-terminal portion of protein S gene 1 of M. xanthus. The expression of beta-galactosidase activity in an M. xanthus strain containing the gene fusion was shown to be under developmental control. This result suggests that gene 1 is also expressed during development although apparently at a much lower level than gene 2.  相似文献   

14.
We developed a system for DNA packaging of isolated bacteriophage T4 proheads in vitro and studied the role of prohead expansion in DNA packaging. Biologically active proheads have been purified from a number of packaging-deficient mutant extracts. The cleaved mature prohead is the active structural precursor for the DNA packaging reaction. Packaging of proheads requires ATP, Mg2+ and spermidine, and is stimulated by polyethylene glycol and dextran. Predominantly expanded proheads (ELPs) are produced at 37 degrees C and predominantly unexpanded proheads (ESPs) are produced at 20 degrees C. Both the expanded and unexpanded proheads are active in DNA packaging in vitro. This is based on the observations that (1) both ESPs and ELPs purified by chromatography on DEAE-Sephacel showed DNA packaging activity; (2) apparently homogeneous ELPs prepared by treatment with sodium dodecyl sulfate (which dissociates ESPs) retained significant biological activity; (3) specific precipitation of ELPs with anti-hoc immunoglobulin G resulted in loss of DNA packaging activity; and (4) ESPs upon expansion in vitro to ELPs retained packaging activity. Therefore, contrary to the models that couple DNA packaging to head expansion, in T4 the expansion and packaging appear to be independent, since the already expanded DNA-free proheads can be packaged in vitro. We therefore propose that the unexpanded to expanded prohead transition has evolved to stabilize the capsid and to reorganize the prohead shell functionally from a core-interacting to a DNA-interacting inner surface.  相似文献   

15.
We have obtained frameshift mutations of the bacteriophage T4 gene 67 by manipulating restriction cleavage sites within the gene cloned onto small plasmids. When these mutated genes were recombined back into the T4 genome the resulting phages were inviable. They could only be propagated by complementation in strains carrying a cloned, non-mutated copy of the gene on a plasmid. These experiments demonstrate that gene 67 is essential for T4 growth. Electron microscopy of bacteria infected with 67? phages revealed that phage head morphogenesis was blocked at an early stage and particles resembling abnormal preheads were found in large numbers. The gene 67 product, PIP, is therefore essential for correct prehead assembly.  相似文献   

16.
17.
18.
The assembly activity and electrophoretic mobility of a T4 bacteriophage baseplate protein, P11, have been found to be affected by digestion with the proteases trypsin, subtilisin and carboxypeptidase Y. Analysis of the trypsin limit-digestion product of P11 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and size analysis by high performance liquid chromatography indicate that there is a decrease of approximately 5000 in the molecular weight of the P11 molecule or a loss of 2500 in Mr from each of the gp11 subunits of the dimer. During protease treatment P11 demonstrates a time-dependent loss in the ability to interact with the baseplate protein P10 to form the P(10/11) complex, the first assembly intermediate of the T4 baseplate 1/6th arm. Similar treatments of the P(10/11) complex indicate that P11 in the complex is not affected by these proteases. Concomitant with the loss of assembly activity is a change in the electrophoretic mobility of P11 on non-denaturing polyacrylamide gels from a single band to a series of more mobile bands suggesting sequential loss of positive charge. P11 assembly activity is completely lost after removal of the first positive charge. These results suggest that the carboxyl termini of the two gp11 subunits of the P11 molecule are involved in the interaction of P11 with P10 to form the P(10/11) complex. Analysis of the portion of gp11 removed by carboxypeptidase Y demonstrates that there are up to 13 aliphatic and aromatic carboxyl-terminal amino acids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号