首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy.  相似文献   

3.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

4.
The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.  相似文献   

5.
The anabolism of pyrimidine ribo- and deoxyribonucleosides from uracil and thymine was investigated in phytohemagglutinin-stimulated human peripheral blood lymphocytes and in a Burkitt's lymphoma-derived cell line (Raji). We studied the ability of these cells to synthesize pyrimidine nucleosides by ribo- and deoxyribosyl transfer between pyrimidine bases or nucleosides and the purine nucleosides inosine and deoxyinosine as donors of ribose 1-phosphate and deoxyribose 1-phosphate, respectively: these reactions involve the activities of purine-nucleoside phosphorylase, and of the two pyrimidine-nucleoside phosphorylases (uridine phosphorylase and thymidine phosphorylase). The ability of the cells to synthesize uridine was estimated from their ability to grow on uridine precursors in the presence of an inhibitor of pyrimidine de novo synthesis (pyrazofurin). Their ability to synthesize thymidine and deoxyuridine was estimated from the inhibition of the incorporation of radiolabelled thymidine in cells cultured in the presence of unlabelled precursors. In addition to these studies on intact cells, we determined the activities of purine- and pyrimidine-nucleoside phosphorylases in cell extracts. Our results show that Raji cells efficiently metabolize preformed uridine, deoxyuridine and thymidine, are unable to salvage pyrimidine bases, and possess a low uridine phosphorylase activity and markedly decreased (about 1% of peripheral blood lymphocytes) thymidine phosphorylase activity. Lymphocytes have higher pyrimidine-nucleoside phosphorylases activities, they can synthesize deoxyuridine and thymidine from bases, but at high an non-physiological concentrations of precursors. Neither type of cell is able to salvage uracil into uridine. These results suggest that pyrimidine-nucleoside phosphorylases have a catabolic, rather than an anabolic, role in human lymphoid cells. The facts that, compared to peripheral blood lymphocytes, lymphoblasts possess decreased pyrimidine-nucleoside phosphorylases activities, and, on the other hand, more efficiently salvage pyrimidine nucleosides, are consistent with a greater need of these rapidly proliferating cells for pyrimidine nucleotides.  相似文献   

6.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

7.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

8.
J M Coll  S W Luborsky  P T Mora 《Biochemistry》1977,16(14):3169-3177
A family of mouse fibroblast cell lines in exponential phase of growth were compared in protein constitution of their cell membranes. In preparations from these cells enriched in cell-surface membrane we observed one protein component (apparent molecular weight about 250 000) consistently to be reduced or absent in an SV40 virus transformed cell line, when compared with the normal cell line. No such compositional difference was observed in a spontaneously transformed tumorigenic clonal derivative cell line, or in subclones of such a derivative cell line, with or without SV40 virus infection. However, in metabolic labeling experiments with 14C-labeled mixed amino acids, a consistent decrease also was demonstrated in the biosynthesis of the same protein in the SV40 virus infected subclone, as compared to an uninfected sister subclone, during exponential growth. This specific difference in biosynthesis is apparently related to the presence and functioning of the SV40 gene, and correlates with the ability of these cells to grow in viscous medium, but not with cellular tumorigenicity.  相似文献   

9.
The pyrimidine metabolism of Tritrichomonas foetus (KV 1) was studied using whole cells and cell homogenates. Pyrimidines and pyrimidine nucleosides were readily incorporated into nucleic acids. Orotate and aspartate were not incorporated into pyrimidine bases. Enzymes of the pyrimidine salvage pathway (i.e., thymidine and uridine phosphorylases and uridine kinase) were detected in trophozoite homogenates, but the activities of de novo pyrimidine synthesis enzymes (i.e., carbamoylphosphate synthase, aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase) were below the level of detection in these same homogenates. The evidence presented supports the proposal that T. foetus is incapable of synthesizing pyrimidines de novo but is capable of salvaging preformed pyrimidines and pyrimidine nucleosides from the growth medium and that enzymes of this parasite's pyrimidine salvage pathway are not organelle-associated.  相似文献   

10.
5'-Nucleotidases are the catabolic members of the substrate cycles postulated to be involved in the regulation of intracellular deoxyribonucleoside triphosphate pools. Here, we attempt to identify the nature of the nucleotidases. Earlier, we constructed various mammalian cell lines that can be induced to overproduce the high K(m) 5'-nucleotidase (hkm-NT) or the 5'(3')-deoxynucleotidase (dNT-1). Now we labeled control and induced human 293 cells and hamster V79 cells with radioactive hypoxanthine or uridine and during a chase measured quantitatively the metabolism of ribo- and deoxyribonucleotides, DNA replication, and excretion of nucleosides into the medium. Overproduction of hkm-NT greatly increased excretion of inosine and guanosine but did not affect adenosine or deoxyribonucleosides. dNT-1 overproduction increased excretion of deoxycytidine, thymidine, and in particular deoxyuridine but also uridine and cytidine. We conclude that the hkm-NT is not involved in the regulation of deoxyribonucleotide pools but affects IMP and GTP pools. dNT-1, instead, appears to be the catabolic arm of substrate cycles regulating pyrimidine nucleotide pools.  相似文献   

11.
Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria   总被引:1,自引:0,他引:1  
Mycobacterium microti incorporated a wide range of exogenously supplied pyrimidines into its nucleic acids. M. avium incorporated a relatively narrow range of pyrimidines but both M. avium and M. microti when recovered after growth in vivo incorporated a slightly wider range of pyrimidines than the same strains grown in vitro. M. microti and M. leprae could not take up uridine nucleotides directly but could utilize the pyrimidines by hydrolysing them to uridine and then taking up the uridine. Pyrimidine biosynthesis, judged by the ability to incorporate carbon from CO2 or aspartate into pyrimidines was readily detected in non-growing suspensions of M. microti and M. avium harvested from Dubos medium, which does not contain pyrimidines. The biosynthetic activity was diminished in mycobacteria grown in vivo when there is likely to be a source of pyrimidines which they might use. Relative activities for pyrimidine biosynthesis de novo in M. microti were 100 for cells isolated from Dubos medium, 6 for cells isolated from Dubos medium containing the pyrimidine cytidine and 11 from cells recovered after growth in mice. In contrast, relative activities for a scavenging reaction, uracil incorporation, were 100, 71 and 59, respectively. Three key enzymes in the pathway of pyrimidine biosynthesis de novo were detected in M. microti and M. avium. Two, dihydroorotate synthase and orotate phosphoribosyltransferase appeared to be constitutive in M. microti and M. avium. Aspartate transcarbamoylase activity was higher in these mycobacteria grown in vivo than in Dubos medium but it was repressed in M. microti or M. avium grown in Dubos medium in the presence of 50 microM-pyrimidine. Aspartate transcarbamoylase was strongly inhibited by the feedback inhibitors ATP, CTP and UTP. Enzymes for scavenging pyrimidines were detected at low specific activities in all mycobacteria studied. Activities of phosphoribosyltransferases, enzymes that convert bases directly to nucleotides, were not related to the ability of intact mycobacteria to take up pyrimidine bases while activities of pyrimidine nucleoside kinases were generally related to the ability of intact mycobacteria to take up nucleosides. Phosphoribosyltransferase activity for uracil, cytosine, orotic acid and--in organisms grown in Dubos medium with 50 microM-uridine-thymine, as well as kinases for uridine, deoxyuridine, cytidine and thymidine were detected in M. microti. However, M. avium only contained uracil and orotate phosphoribosyltransferase, uridine, cytidine and thymidine kinase, and additionally deoxyuridine kinase when grown axenically with 50 microM-uracil, reflecting its more limited abilities in pyrimidine scavenging.  相似文献   

12.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

13.
Pyrimidine biosynthetic pathway of Pseudomonas fluorescens   总被引:5,自引:0,他引:5  
Pyrimidine biosynthesis in Pseudomonas fluorescens strain A126 was investigated. In this study, de novo pyrimidine biosynthetic pathway mutant strains were isolated using both conventional mutagenesis and transposon mutagenesis. The resulting mutant strains were deficient for either aspartate transcarbamoylase, dihydroorotase or orotate phosphoribosyltransferase activity. Uracil, uridine or cytosine could support the growth of every mutant strain selected. In addition, the aspartate transcarbamoylase mutant strains could utilize orotic acid to sustain their growth while the orotidine-5'-monophosphate decarboxylase mutant strains grew slowly upon uridine 5'-monophosphate. The wild-type strain and the mutant strains were used to study possible regulation of de novo pyrimidine biosynthesis in P. fluorescens. Dihydroorotase specific activity more than doubled after the wild-type cells were grown in orotic acid relative to unsupplemented minimal-medium-grown cells. Starving the mutant strains of pyrimidines also influenced the levels of several de novo pyrimidine biosynthetic pathway enzyme activities.  相似文献   

14.
Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC(50)) of 2.4 nM and a 50% cytotoxic concentration (CC(50)) of >5 μM. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC(90)s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compound-mediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound.  相似文献   

15.
Uridine kinase activity measured in cell-free extracts of Novikoff rat hepatoma cells grown in suspension culture fluctuates about 10 fold during the growth cycle of the cells. Maximum specific activity (units/106 cells) is observed early in the exponential phase and then decreases progressively until the stationary phase. The rate of incorporation of uridine into the acid-soluble pool by intact cells fluctuates in a similar manner and both the rate of uridine incorporation by intact cells and the uridine kinase actvity of the cells increase several fold before cell division commences following dilution of stationary phase cultures with freshmedium. Regardless of the stage of growth, uridine is rapidly phosphorylated to the triphosphate level by the cells. The rates of incorporation of uridine into the nucleotide pool and into RNA by intact cells fluctuate in a similar manner during the growth cycle. However, evidence is presented that indicates that alterations in the rate of incorporation of uridine into RNA are not simply due to changes in the rate of phosphorylation of uridine, but are regulated independently. Inhibition of protein synthesis by treating cells with puromycin or actidione causes a marked inhibition of incorporation of uridine into RNA, but has little effect on the phosphorylation of uridine to UTP for several hours. Thus the depression of incorporation of uridine into RNA probably reflects a decrease in the rate of RNA synthesis as a result of inhibition of protein synthesis. Inhibition of RNA synthesis by treating cells with actinomycin D does not affect the rate of conversion of uridine to UTP and thus results in the accumulation of labeled UTP in treated cells.  相似文献   

16.
Hoch, J. A. (University of Illinois, Urbana), and R. D. DeMoss. Physiological role of tryptophanase in control of tryptophan biosynthesis in Bacillus alvei. J. Bacteriol. 91:667-672. 1966.-Indole excretion occurred early in the exponential growth phase, and derived mainly from biosynthetic intermediates of tryptophan. Tryptophan cleavage by tryptophanase contributed about 1.5% of the indole excreted. In the presence of exogenous tryptophan (5 to 10 mug/ml), excretion of early indole was not observed. Experiments with isotopically labeled indole and tryptophan showed that a low rate of endogenous tryptophan biosynthesis occurred constantly during growth. Both exogenously and endogenously supplied tryptophan were degraded by tryptophanase. As a consequence, the intracellular tryptophan concentration appeared to be maintained at a constant low level. It was suggested that the action of tryptophanase is an example of an enzymatic mechanism which controls the level of a specific metabolite pool.  相似文献   

17.
Kinetic analyses of mRNA and 28-S RNA labeling [3H]uridine revealed distinctly different steady-state specific radioactivities finally reached for uridine in mRNA and 28-S RNA when exogenous [3H]uridine was kept constant for several cell doubling times. While the steady-state label of (total) UTP and of uridine in mRNA responded to the same extent to a suppression of pyrimidine synthesis de novo by high uridine concentrations in the culture medium, uridine in 28-S RNA was scarcely influenced. Similar findings were obtained with respect to labeling of cytidine in the various RNA species due to an equilibration of UTP with CTP [5-3H]Uridine is also incorporated into deoxycytidine of DNA, presumably via dCTP. The specific radioactivity of this nucleosidase attained the same steady-state value as UTP, uridine in mRNA and cytidine in mRNA. The data indicate the existence of two pyrimidine nucleotide pools. One is a large, general UTP pool comprising the bulk of the cellular UTP and serving nucleoplasmic nucleic acid formation (uridine and cytidine in mRNA, deoxycytidine in DNA). Its replenishment by de novo synthesis can be suppressed completely by exogenous uridine above 100 muM concentrations. A second, very small UTP (and CTP) pool with a high turnover provides most of the precursors for nucleolar RNA formation (rRNA). This pool is not subject to feedback inhibition by extracellular uridine to an appreciable extent. Determinations of (total) UTP turnover also show that the bulk of cellular RNA (rRNA) cannot be derived from the large UTP pool.  相似文献   

18.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

19.
Nucleotide biosynthesis in Novikoff hepatoma cells is markedly altered by a variety of chemical mutagens, whether the mechanism of mutagenesis is by base substitution, covalent binding (adduct formation), intercalation, or cross-linking of DNA. The compounds investigated (N-methyl-N'-nitro-N-nitrosoguanidine, 4-nitroquinoline 1-oxide, 9-aminoacridine, and mitomycin C), at concentrations that cause some inhibition of RNA and DNA synthesis, bring about a large increase in the pool levels of all four nucleoside triphosphates. At the same time, reactions leading to the synthesis of CTP from exogenous uridine and GTP and ATP from exogenous hypoxanthine are severely inhibited. The formation of UTP from uridine and ATP from adenosine, by more direct phosphorylation reactions, appears relatively unaffected. The increase in nucleotide pool size cannot be accounted for by a corresponding increase in de novo purine and pyrimidine nucleotide synthesis, as experiments with labeled formate and aspartate show similar inhibitions by the mutagens. With the salvage precursors, [3H]uridine and [3H]hypoxanthine, the mutagens can produce a widely divergent reduction in the labeling of RNA-CMP versus RNA-UMP and of RNA-GMP versus RNA-AMP, mostly a result of these agents causing large differences in the specific activities of the respective triphosphate precursors. These observations suggest that, in addition to the reactions with DNA, nucleotide biosynthesis could be another important biochemical target of chemical mutagens.  相似文献   

20.
The carbamoyl phosphate synthetase domain of the multifunctional protein CAD catalyzes the initial, rate-limiting step in mammalian de novo pyrimidine biosynthesis. In addition to allosteric regulation by the inhibitor UTP and the activator PRPP, the carbamoyl phosphate synthetase activity is controlled by mitogen-activated protein kinase (MAPK)- and protein kinase A (PKA)-mediated phosphorylation. MAPK phosphorylation, both in vivo and in vitro, increases sensitivity to PRPP and decreases sensitivity to the inhibitor UTP, whereas PKA phosphorylation reduces the response to both allosteric effectors. To elucidate the factors responsible for growth state-dependent regulation of pyrimidine biosynthesis, the activity of the de novo pyrimidine pathway, the MAPK and PKA activities, the phosphorylation state, and the allosteric regulation of CAD were measured as a function of growth state. As cells entered the exponential growth phase, there was an 8-fold increase in pyrimidine biosynthesis that was accompanied by a 40-fold increase in MAPK activity and a 4-fold increase in CAD threonine phosphorylation. PRPP activation increased to 21-fold, and UTP became a modest activator. These changes were reversed when the cultures approach confluence and growth ceases. Moreover, CAD phosphoserine, a measure of PKA phosphorylation, increased 2-fold in confluent cells. These results are consistent with the activation of CAD by MAPK during periods of rapid growth and its down-regulation in confluent cells associated with decreased MAPK phosphorylation and a concomitant increase in PKA phosphorylation. A scheme is proposed that could account for growth-dependent regulation of pyrimidine biosynthesis based on the sequential action of MAPK and PKA on the carbamoyl phosphate synthetase activity of CAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号