首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Methanobacterium espanolae, an acidiphilic methanogen, required acetate for maximal growth on H(2)-CO(2). In the presence of 5 to 15 mM acetate, at a growth pH of 5.5, the mu(max) was 0.05 h. M. espanolae consumed 12.3 mM acetate during 96 h of incubation at 35 degrees C with shaking at 100 rpm. At initial acetate levels of 2.5 to 10.0 mM, the amount of biomass produced was dependent on the amount of acetate in the medium. C nuclear magnetic resonance spectra of protein hydrolysates obtained from cultures grown on [1-C]- or [2-C]acetate indicated that an incomplete tricarboxylic acid pathway, operating in the reductive direction, was functional in this methanogen. The amino acids were labeled with a very high degree of specificity and at greater than 90% enrichment levels. Less than 2% label randomization occurred between positions primarily labeled from either the carboxyl or methyl group of acetate, and very little label was transferred to positions primarily labeled from CO(2). The labeling pattern of carbohydrates was typical for glucogenesis from pyruvate. This methanogen, by virtue of the properties described above and its ability to incorporate all of the available acetate (10 mM or lower) from the growth medium, has advantages over other microorganisms for use in the production of specifically labeled compounds.  相似文献   

2.
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by 13C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-13C]propionate was converted to [2-13C]acetate, with no [1-13C]acetate formed. Butyrate from [3-13C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-13C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-13C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-13C-labeled propionate yielded both [1-13C]acetate and [2-13C]acetate. When 13C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, 13C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.  相似文献   

3.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine.  相似文献   

4.
Malate synthesis by CO2 fixation in wheat (Triticum aestivum L.) and lupin (Lupinus luteus) roots was investigated by labeling with NaH13CO3 as well as with NaH14CO3. The distribution of 14C label in the malate was examined, using enzymic degradation methods (malic enzyme, pyruvate decarboxylase) and, in the case of 13C, gas chromatography-mass spectrometry. In long-term experiments (2 to 12 hours), both methods showed that the [1-C] and [4-C] positions of malic acid are approximately equally labeled, in agreement with former findings. Short-term experiments (15, 30 seconds) showed that 14C is confined initially to the [4-C] position of malate but then is distributed quickly to the [1-C] atom. Neither labeling pattern nor rate of randomization was influenced by salt treatment. Analysis of malate from roots by gas chromatography-mass spectrometry, a procedure which was tested against in vitro-prepared [1-13C]-, [4-13C]-, and [1,4-13C] malate, gave strong evidence for the existence of only singly labeled malate molecules. These data suggest that only one carboxylation step, catalyzed by phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, is responsible for malic acid synthesis in roots and that malate label is randomized by a fumarase-like reaction, presumably in mitochondria.  相似文献   

5.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

6.
An incorporation study of [1-13C] and [1,2-13C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-13C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-13C]- and [2-13C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

7.
Following long-term labeling with [1-13C]acetate, [2-13C]acetate, 13CO2, H13COOH, or 13CH3OH, NMR spectroscopy was used to determine the labeling patterns of the purified ribonucleosides of Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii. Major differences were observed among the methanogens studied, specifically at carbon positions 2 and 8 of the purines, positions at which one-carbon carriers are involved during synthesis. In Methanospirillum hungatei and Methanosarcina barkeri, the labcl at both positions came from carbon atom C-2 of acetate, as predicted from known eubacterial pathways, whereas in Methanococcus voltae and Methanobacterium bryantii both originated from CO2. In Methanosphaera stadtmanae grown in the presence of formate, the C-2 of purines originated exclusively from formate and the C-8 was labeled by the C-2 of acetate. When grown in media devoid of formate, the C-2 of the purine ring originated mainly from the C-2 of acetate and in part from CH3OH. In Methanobrevibacter smithii grown in the presence of formate, C-2 and C-8 of purines were derived from CO2 and/or formate. The labeling patterns obtained for pyrimidines are consistent with the biosynthetic pathways common to eubacteria and eucaryotes.Abbreviations CODH Carbon monoxide dehydrogenase - FH4 tetrahydrofolate - H4MPT tetrahydromethanopterin Issued as NRCC Publication No. 37383  相似文献   

8.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

9.
Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO2 fixation is an important component of the carbon metabolism in S. brunnea, and it is likely that this anaplerotic role is particularly prevalent during NH4+ assimilation. The most relevant information resulting from this investigation is (a) the occurrence of the mannitol cycle, (b) a large part of the trehalose pool is synthesized after the cycling of glucose-carbon through the mannitol cycle, and (c) pyruvate (or phosphoenolpyruvate) carboxylation plays an important role in the primary metabolism of glucose-fed mycelia.  相似文献   

10.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

11.
Eleven strains of methanogenic bacteria were divided into two groups on the basis of the directionality (oxidative or reductive) of their citric acid pathways. These pathways were readily identified for most methanogens from the patterns of carbon atom labeling in glutamate, following growth in the presence of [2-13C]acetate. All used noncyclic pathways, but members of the family Methanosarcinaceae were the only methanogens found to use the oxidative direction. Methanococcus jannaschii failed to incorporate carbon from acetate despite transmembrane equilibration comparable to other weak acids. This organism was devoid of detectable activities of the acetate-incorporating enzymes acetyl coenzyme A synthetase, acetate kinase, and phosphotransacetylase. However, incorporation of [1-13C]-, [2-13C]-, or [3-13C]pyruvate during the growth of M. jannaschii was possible and resulted in labeling patterns indicative of a noncyclic citric acid pathway operating in the reductive direction to synthesize amino acids. Carbohydrates were labeled consistent with glucogenesis from pyruvate. Leucine, isoleucine, phenylalanine, lysine, formate, glycerol, and mevalonate were incorporated when supplied to the growth medium. Lysine was preferentially incorporated into the lipid fraction, suggesting a role as a phytanyl chain precursor.  相似文献   

12.
Photosynthesis experiments with 14CO2 established that of 16 Droseraceae species tested Drosophylum lusitanicum incorporated the highest amount of label into plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone). Tyrosine-[β-14C] fed to Drosophyllum was shown to label plumbagin efficiently (20% incorporation). Extensive chemical degradation of the labeled naphthoquinone showed, however, that the incorporation of tyrosine was indirect, the label being distributed throughout the molecule. It was established that plumbagin and the closely related 7-methyljuglone are biosynthesized via the acetate-polymalonate pathway. Tyrosine is broken down to acetate in this tissue via the homogentisate pathway, which was demonstrated by feeding and incorporation of label into plumbagin of intermediates such as homogentisate-[14C], maleyl- and fumarylacetoacetate-[14C]. Simultaneous application of tyrosine-[β-14C] and α,α′-bipyridyl, an inhibitor of the homogentisate oxigenase, led to an accumulation of homogentisate-[14C] within the tissue. The degradation of tyrosine to acetate by Drosophyllum is not due to epiphytic bacteria since ring cleavage of tyrosine and formation of plumbagin from breakdown products occurred both within sterile grown plants and sterile cell suspension cultures. In tissue kept in darkness, plumbagin undergoes a slow turnover with a half life of about 400 hr.  相似文献   

13.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

14.

Background

Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle.

Methods

Hyperpolarized [1-13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1-13C]acetate and [1-13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios.

Results

Although separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1-13C]acetate to [1-13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min.

Conclusions

The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results.

General significance

This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.  相似文献   

15.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

16.
Biosynthesis of the aliphatic components of suberin was studied in suberizing potato (Solanum tuberosum) slices with [1-14C]oleic acid and [1-14C]acetate as precursors. In 4-day aged tissue, [1-14C]oleic acid was incorporated into an insoluble residue, which, upon hydrogenolysis (LiA1H4), released the label into chloroform-soluble products. Radio thin layer and gas chromatographic analyses of these products showed that 14C was contained exclusively in octadecenol and octadecene-1, 18-diol. OsO4 treatment and periodate cleavage of the resulting tetraol showed that the labeled diol was octadec-9-ene-1, 18-diol, the product expected from the two major components of suberin, namely 18-hydroxyoleic acid and the corresponding dicarboxylic acid. Aged potato slices also incorporated [1-14C]acetate into an insoluble material. Hydrogenolysis followed by radio chromatographic analyses of the products showed that 14C was contained in alkanols and alkane-α,ω-diols. In the former fraction, a substantial proportion of the label was contained in aliphatic chains longer than C20, which are known to be common constituents of suberin. In the labeled diol fraction, the major component was octadec-9-ene-1,18-diol, with smaller quantities of saturated C16, C18, C20, C22, and C24-α,ω-diols. Soluble lipids derived from [1-14C]acetate in the aged tissue also contained labeled very long acids from C20 to C28, as well as C22 and C24 alcohols, but no labeled ω-hydroxy acids or dicarboxylic acids were detected. Label was also found in n-alkanes isolated from the soluble lipids, and the distribution of label among them was consistent with the composition of n-alkanes found in the wound periderm of this tissue; C21 and C23 were the major components with lesser amounts of C19 and C25. The amount of 14C incorporated into these bifunctional monomers in 0-, 2-, 4-, 6-, and 8-day aged tissue were 0, 1.5, 2.5, 0.8, and 0.3% of the applied [1-14C]oleic acid, respectively. Incorporation of [1-14C]acetate into the insoluble residue was low up to the 3rd day of aging, rapid during the next 4 days of aging, and subsequently the rate decreased. These changes in the rates of incorporation of exogenous oleic acid and acetate reflected the development of diffusion resistance of the tissue surface to water vapor. As the tissue aged, increasing amounts of the [1-14C]acetate were incorporated into longer aliphatic chains of the residue and the soluble lipids, but no changes in the distribution of radioactivity among the α-ω-diols were obvious. The above results demonstrated that aging potato slices constitute a convenient system with which to study the biochemistry of suberization.  相似文献   

17.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

18.
Chloroflexus aurantiacus OK-70 fl secreted 3-hydroxypropionate (3HP) during phototrophic growth. The greatest amounts were secreted by cells grown on propionate (0.35 mM 3HP) while the lowest levels were found in autotrophically grown cultures (1.5 M). Large amounts of 2-fluoro,3-hydroxypropionate were formed by autotrophically grown cells exposed to fluoroacetate (FAc). Increased levels of 3HP were observed in these cultures when incubated with acctate. The secretion of 3HP was further stimulated by 0.2 mM KCN, an inhibitor of CO2 fixation, but only in the presence of acetate. The pathway of 3HP formation was studied by using 13C-labelled substrates and NMR. The 3HP formed in the presence of C1-labelled acetate and FAc was labelled at C3 and somewhat less at C2 while with C2-labelled acetate as the tracer 3HP was labelled predominantly at C2. The carboxyl group was derived from CO2. The 3HP formed by cells grown on propionate and 13CO2 was labelled at all carbon atoms, the label content of C2 and C3 was about 25 and 65% of that of C1 respectively. It is suggested that 3HP is an intermediate in a pathway for acetate assimilation and in a new reductive carboxylic acid cycle for autotrophic CO2 fixation.Abbreviations 3HP 3-hydroxypropionate - 2F3HP 2,fluoro,3-hydroxypropionate - FAc fluoroacetate - GC gas chromatography - MS mass spectrometry - NMR nuclear magnetic resonance  相似文献   

19.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

20.
Nutritional Requirements of Methanosarcina sp. Strain TM-1   总被引:2,自引:1,他引:1       下载免费PDF全文
Methanosarcina sp. strain TM-1, an acetotrophic, thermophilic methanogen isolated from an anaerobic sludge digestor, was originally reported to require an anaerobic sludge supernatant for growth. It was found that the sludge supernatant could be replaced with yeast extract (1 g/liter), 6 mM bicarbonate-30% CO2, and trace metals, with a doubling time on methanol of 14 h. For growth on either methanol or acetate, yeast extract could be replaced with CaCl2 · 2H2O (13.6 μM minimum) and the vitamin p-aminobenzoic acid (PABA, ca. 3 nM minimum), with a doubling time on methanol of 8 to 9 h. Filter-sterilized folic acid at 0.3 μM could not replace PABA. The antimetabolite sulfanilamide (20 mM) inhibited growth of and methanogenesis by Methanosarcina sp. strain TM-1, and this inhibition was reversed by the addition of 0.3 μM PABA. When a defined medium buffered with 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid was used, it was shown that Methanosarcina sp. strain TM-1 required 6 mM bicarbonate-30% CO2 for optimal growth and methanogenesis from methanol. Cells growing on acetate were less dependent on bicarbonate-CO2. When we used a defined medium in which the only organic compounds present were methanol or acetate, nitrilotriacetic acid (0.2 mM), and PABA, it was possible to limit batch cultures of Methanosarcina sp. strain TM-1 for nitrogen at NH4+ concentrations at or below 2.0 mM, in marked contrast with Methanosarcina barkeri 227, which fixes dinitrogen when grown under NH4+ limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号