首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

2.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

3.
4.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

5.
The present work displayed the first quantitative data of forces acting on tendons and pulleys during specific sport-climbing grip techniques. A three-dimensional static biomechanical model was used to estimate finger muscle tendon and pulley forces during the "slope" and the "crimp" grip. In the slope grip the finger joints are flexed, and in the crimp grip the distal interphalangeal (DIP) joint is hyperextended while the other joints are flexed. The tendons of the flexor digitorum profundus and superficialis (FDP and FDS), the extensor digitorum communis (EDC), the ulnar and radial interosseus (UI and RI), the lumbrical muscle (LU) and two annular pulleys (A2 and A4) were considered in the model. For the crimp grip in equilibrium conditions, a passive moment for the DIP joint was taken into account in the biomechanical model. This moment was quantified by relating the FDP intramuscular electromyogram (EMG) to the DIP joint external moment. Its intensity was estimated at a quarter of the external moment. The involvement of this parameter in the moment equilibrium equation for the DIP joint is thus essential. The FDP-to-FDS tendon-force ratio was 1.75:1 in the crimp grip and 0.88:1 in the slope grip. This result showed that the FDP was the prime finger flexor in the crimp grip, whereas the tendon tensions were equally distributed between the FDP and FDS tendons in the slope grip. The forces acting on the pulleys were 36 times lower for A2 in the slope grip than in the crimp grip, while the forces acting on A4 were 4 times lower. This current work provides both an experimental procedure and a biomechanical model that allows estimation of tendon tensions and pulley forces crucial for the knowledge about finger injuries in sport climbing.  相似文献   

6.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

7.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

8.
Determining tendon tensions of the finger muscles is crucial for the understanding and the rehabilitation of hand pathologies. Since no direct measurement is possible for a large number of finger muscle tendons, biomechanical modelling presents an alternative solution to indirectly evaluate these forces. However, the main problem is that the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint resulting in mathematical under-determinate problems. In the current study, a method using both numerical optimization and the intra-muscular electromyography (EMG) data was developed to estimate the middle finger tendon tensions during static fingertip force production. The method used a numerical optimization procedure with the muscle stress squared criterion to determine a solution while the EMG data of three extrinsic hand muscles serve to enforce additional inequality constraints. The results were compared with those obtained with a classical numerical optimization and a method based on EMG only. The proposed method provides satisfactory results since the tendon tension estimations respected the mechanical equilibrium of the musculoskeletal system and were concordant with the EMG distribution pattern of the subjects. These results were not observed neither with the classical numerical optimization nor with the EMG-based method. This study demonstrates that including the EMG data of the three extrinsic muscles of the middle finger as inequality constraints in an optimization process can yield relevant tendon tensions with regard to individual muscle activation patterns, particularly concerning the antagonist muscles.  相似文献   

9.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

10.
In this study we investigated the influence of the loading condition (concentric vs. eccentric loading) on the pulley system of the finger. For this purpose 39 cadaver finger (14 hands, 10 donors) were fixed into an isokinetic loading device. The forces in the flexor tendons and at the fingertip were recorded. In the concentric loading condition A2 and A4 ruptures as well as alternative events such as fracture of a phalanx or avulsion of the flexor tendons were almost equally distributed, whereas the A2 pulley rupture was the most common event (59%) in the eccentric loading condition and alternative events were rare (23.5%). The forces in the deep flexor tendon, the fingertip and in the pulleys were significantly lower in the eccentric loading condition. As the ruptures occurred at lower loads in the eccentric than in the concentric loading condition it can be concluded that friction may be an advantage for climbers, supporting the holding force of their flexor muscles but may also increase the susceptibility to injury.  相似文献   

11.
The mechanical effect of a muscle following agonist-to-antagonist tendon transfers does not always meet the surgeon's expectations. We tested the hypothesis that after flexor carpi ulnaris (FCU) to extensor carpi radialis (ECR) tendon transfer in the rat, the direction (flexion or extension) of the muscle's joint moment is dependent on joint angle. Five weeks after recovery from surgery (tendon transfer group) and in a control group, wrist angle-moment characteristics of selectively activated FCU muscle were assessed for progressive stages of dissection: 1) with minimally disrupted connective tissues, 2) after distal tenotomy, and 3) after maximal tendon and muscle belly dissection, but leaving blood supply and innervations intact. In addition, force transmission from active FCU onto the distal tendon of passive palmaris longus (PL) muscle (a wrist flexor) was assessed. Excitation of control FCU yielded flexion moments at all wrist angles tested. Tenotomy decreased peak FCU moment substantially (by 93%) but not fully. Only after maximal dissection, FCU wrist moment became negligible. The mechanical effect of transferred FCU was bidirectional: extension moments in flexed wrist positions and flexion moments in extended wrist positions. Tenotomy decreased peak extension moment (by 33%) and increased peak flexion moment of transferred FCU (by 41%). Following subsequent maximal FCU dissection, FCU moments decreased to near zero at all wrist angles tested. We confirmed that, after transfer of FCU towards a wrist extensor insertion, force can be transmitted from active FCU to the distal tendon of passive PL. We conclude that mechanical effects of a muscle after tendon transfer to an antagonistic site can be quite different from those predicted based solely on the sign of the new moment arm at the joint.  相似文献   

12.
A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads.  相似文献   

13.
In order to move the finger the tendon force must overcome the gliding resistance of the tendon as well as the forces to move the joints, finger inertias, and external load. These sources, combined, make up the work of flexion (WOF) which has been experimentally used to evaluate the finger function. In this study, we have designed a new device, which can measure the forces at the proximal and distal end of the tendon during finger flexion, so that gliding resistance can be isolated from the WOF. Two index fingers from a pair of human cadaver hands were used for testing this device. Preliminary data showed that internal resistance occupied about 10% of WOF with an intact tendon. However, after tendon repair, the gliding resistance increased 31% of WOF for a modified Kessler repair and 50% of WOF for a Becker repair compared to intact tendon. We simulated joint stiffness by injection of saline solution into the proximal interphalangeal joint. This increased the overall WOF but not the gliding resistance. We believe that this testing device provides a useful tool to evaluate finger function after tendon repair in an experimental model.  相似文献   

14.
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.  相似文献   

15.
The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40 N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0–105°. The difference between static extension and flexion torque was maximal 11% in average at about 83° of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device.  相似文献   

16.
Tensions in the quadriceps tendon and infrapatellar ligament were measured as a function of flexion angle in eight cadaver knees using a load cell of a materials tester to determine the quadriceps force and a spring balance to quantify the patellar tendon force. The ratio between the tensions in the quadriceps tendon and the patellar tendon (FQ/FP) ranged from 1.55 at 70 degrees of flexion to 0.86 at 10 degrees of flexion. The patello-femoral joint reaction (PFJR) force for extension against resistance was maximal at 60 degrees. No change in the quadriceps force required to extend the knee occurred with changes of the Q-angle of +/- 5 degrees. This study demonstrates that FQ does not equal FP as several authors have reported (Bandi, 1972; Barry, 1979; Ficat and Hungerford, 1977; Hungerford and Barry, 1979; Reilly and Martens, 1972; Smidt, 1973). Furthermore, the difference in FQ and FP influences both the magnitude and direction of PFJR. Studies that assess the influence of surgical procedures which alter the patello-femoral joint or the extensor mechanism must take these differences into account.  相似文献   

17.
Despite the paramount function of the thumb in daily life, thumb biomechanical models have been little developed and studied. Moreover, only two studies provided quantitative anthropometric data of tendon moment arms. To investigate thumb tendon tensions, biomechanicians and clinicians have to know the performances and the limits of these two data sets. The aim of this study was thus to compare the results of these two models and evaluate their performances in regard to prior electromyographic measurements (EMG).Thumb posture was recorded during the classical key pinch and pulp pinch grips. Various fingertip forces applied at the distal segment were simulated in a range including extension, adduction, flexion, abduction. Input data of thumb postures and fingertip forces were used to compute tendon tensions with both models. Tendon tensions obtained using these two models were then compared and correlated to EMG measurements provided in the literature.The results showed that both models predicted relevant muscle coordination for five of the nine muscles modelled. Opponent and abductor longus muscle coordinations were badly estimated by both models. Each model was sensible to kinematic errors but not in the same proportion. This study pointed out the advantages/limits of the two models to use them more appropriately for clinical and/or research purposes.  相似文献   

18.
This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism''s distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.  相似文献   

19.
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.  相似文献   

20.
The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study’s aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号