首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 641 毫秒
1.
从大庆油田土壤中分离得到1株可降解二苯并噻吩(DBT)的脱硫微生物HDBS-1,对该微生物的种属地位进行了鉴定并通过诱变手段提高了该菌株的脱硫能力。经过形态观察、生理生化特征分析及16S rDNA序列测定发现该微生物为坂崎肠杆菌(Enterobacter sakazakii),该菌种可以按特异性脱硫途径(简称4S途径)将DBT转化为2-羟基联苯(2-HBP)。利用紫外线(UV)、硫酸二乙酯(DES)和UV+DES对该菌株复合诱变后,得到菌株HDBS-4,其降解DBT生成2-HBP的能力得到了极大的提高,发酵液中2-HBP生成含量(2.574 mg/L)较原始菌株(0.434 mg/L)提高了5.93倍。  相似文献   

2.
红球菌DS—3脱除二苯并噻吩中有机硫的性能初探   总被引:18,自引:2,他引:16  
从孤岛油田分离到一株红球菌(Rhodococcus sp.)DS—3,能专一地切断二苯并噻吩(DBT)中的C-S键,沿4S途径代谢,生成二羟联苯。实验证明,以2%的接种量脱除50μg/mL DBT底物中的硫效果最佳。在此条件下,适宜菌株生长和脱硫的碳源为葡萄糖,氯源为硝酸铵,初始PH为8.2,生长温度为30℃,15mmol/L的硫酸根离子能使其丧失脱硫能力。在上述适宜条件下,培养72h后DBT中34.04%的硫被脱除。  相似文献   

3.
【目的】针对硫氧化菌种较为特殊的生化特性,优选其氧化硫化物生成单质硫过程的相关限制性因素,以提高该类菌种生成单质硫效率。【方法】采用一株典型脱硫菌Thermithiobacillus tepidarius JNU-2(T.tepidarius JNU-2)氧化硫化物生成单质硫。研究该菌株在以Na2S2O3为能源底物时的培养特性和脱硫性能,并结合单因素实验对菌株氧化硫化物生成单质硫的限制性因素进行优选。【结果】T.tepidarius JNU-2在以Na2S2O3为唯一能源底物培养时的μmax为0.207 h-1,最终生物量为4.0×106 cells/m L。98%的Na2S2O3在24 h时被消耗殆尽,此时单质硫产量达到最大值为0.8 g/L。随后单质硫逐渐被氧化利用,最终稳定在0.2 g/L。经过对该过程主要限制性因素进行单因素实验优化,确定最佳碳氮源、Mg SO4、Fe SO4和能源底物条件分别为:CO2、NH4Cl0.5 g/L、Mg SO4 0.5 g/L、Fe SO4 0.1 g/L和Na2S2O3 15.0 g/L。优化后的氧化Na2S2O3生成单质硫过程的最大生物量可达4.8×106 cells/m L,单质硫产量提升至1.14 g/L。相较于未优化之前,单质硫的产量提高了42.5%。【结论】优化该过程主要限制性因素可有效提高化能自养型T.tepidarius JNU-2氧化硫化物生成单质硫效率。  相似文献   

4.
由最终产物为邻苯基苯酚(2-HBP)的二苯并噻吩(DBT)的4-S代谢途径出发,从被高硫原油污染的土样中分离,纯化得到一株能高效降解DBT的菌株,通过形态学,生理生化试验及16SrDNA基因测序,归类为Mycobacteriumsp.对细菌的培养条件进行研究,初步确定较为适宜的培养条件:温度为40℃,pH值为7.0,转速为200r/min.在此培养条件下,利用该菌株处理含有5mmol/LDBT的正十二烷模拟相,24h以后,DBT减少到3.36mmol/L,平均比脱硫率为8.34mmol DBTh^-1kg^-1 DCW(干细胞重)。  相似文献   

5.
红球菌DS-3脱除二苯并噻吩中有机硫的性能初探   总被引:1,自引:0,他引:1  
从孤岛油田分离到一株红球菌(Rhodococcus sp.)DS\|3,能专一地切断二苯并噻吩(DBT)中的C—S键,沿4S途径代谢,生成二羟联苯。实验证明,以2%的接种量脱除50μg/mL DBT底物中的硫效果最佳。在此条件下,适宜菌株生长和脱硫的碳源为葡萄糖,氮源为硝酸铵,初始pH为8.2,生长温度为30℃,15mmol/L的硫酸根离子能使其丧失脱硫能力。在上述适宜条件下,培养72 h后DBT中34.04%的硫被脱除。  相似文献   

6.
从含硫土壤中分离筛选出一株专一性脱硫菌Fds-1,经生理生化指标和16S rRNA序列分析鉴定其属于枯草芽孢杆菌(Bacillus subtilis)。用Gibb’s试剂显色和气相色谱-质谱联用分析表明,该菌株通过“4S”途径脱除有机硫。实验发现Fds-1的最佳脱硫活性在30℃,在此温度下72h内能脱除约0.5mmol/L DBT中的有机硫。Fds-1菌株对有机硫化合物的利用情况和柴油脱硫前后烃组分比较都进一步证明该菌株适合于柴油生物脱硫。利用休止细胞对不同组分柴油的脱硫研究表明,脱硫菌株Fds-1对精制柴油中的DBT类化合物的降解能力强。因此,该菌株对精制低硫柴油的深度脱硫具有应用意义。  相似文献   

7.
一株生物脱硫菌株的分离、鉴定及其脱硫活性的研究   总被引:3,自引:0,他引:3  
高超  吴涓  李玉成  芮传芳 《生物学杂志》2010,27(4):39-41,34
以二苯并噻吩(DBT)为模型化合物,从火力发电厂周围的土壤和污水处理厂的活性污泥中分离得到一株能高效脱除有机硫的菌株S4,并对其进行了分子鉴定及脱硫活性的研究。应用PCR技术克隆到16S rDNA片段,核苷酸序列分析结果表明,该菌的16S rDNA的全序列与醋酸钙不动杆菌存在99%的同源性。该菌的最适脱硫温度为30℃,pH值为6~8,在此条件,该菌株对DBT的去除率可达到82%。  相似文献   

8.
目的利用二苯并噻吩(DBT)分解菌的分离培养基从昆明捞鱼河的污泥中分离得到一株分解DBT的细菌HWXFJ2。方法通过形态观察、生理生化特征和16S rRNA基因序列分析,表明该菌属于革兰阳性菌、杆状、有荚膜,将其初步鉴定为黄色杆菌属的一株菌株;同时利用该菌株进行DBT分解能力的检测和研究。结果该菌株对DBT有较强的分解能力,在7 d和14 d对DBT分解的量分别是红球菌(Rhodococcus sp.HNCS21)的6.04倍和2.07倍。结论煤炭中的有机硫模式化合物为DBT,本研究可以为脱除煤炭中的有机硫提供理论依据,为进一步的应用提供菌种资源。  相似文献   

9.
在食品、药材的生产加工过程中,经常加入不同价态的含硫化合物进行漂白、防腐和抗氧化。过量使用这些物质会对人体产生损害。因此,应加强对这些物质的检测。本文中,笔者报道了一种基于低场核磁共振技术的检测食品中总无机硫含量的新方法。提出了一种简单的前处理方法,利用过氧化氢(H2O2)将食品样品中所有无机硫氧化至最高价态(硫酸根)。制备了一种含钡盐的水凝胶作为检测试剂。利用Ba2+和SO24-之间的相互作用改变水凝胶中的化学环境,带来质子弛豫时间的改变。在模拟实验中,应用低场核磁共振分析仪测量了凝胶体系在不同浓度Na2SO4溶液中的横向弛豫时间T2,初步得到了T2与SO24-浓度之间的关系曲线。本研究提出的方法成本低、耗时短、前处理简单,有望用于食品中无机硫的快速检测。  相似文献   

10.
专一性脱硫菌脱硫活性比较与基因保守性研究   总被引:5,自引:0,他引:5  
对几株能专一性脱除二苯并噻吩(DBT)中硫元素生成2-羟基联苯的细菌,即短芽孢杆菌(Bacillus brevis)R-6、德氏假单孢菌(Pseudomonas delafleldii)R-8、小球诺卡氏菌(Nocardia globerula)R-9、球形芽孢杆菌(Bacillus sphaericus)R-16、红平红球菌(Rhodococcus erythropolis)LSSE8-1和戈登氏菌(Gordonia nitida)LSSEJ-1展开研究。对照研究发现它们对DBT及其衍生物的代谢活性存在着一定的差异。为了从基因水平分析造成这些差别的原因,对这几株菌的脱硫基因展开了研究。根据Rhodococcus erythropolisIGTS8脱硫基因的保守区设计引物,PCR扩增了R-6、R-8的脱硫基因。测序结果表明脱硫基因高度保守,与IGTS8的相关脱硫基因相似性在99%以上。为了进一步验证不同专一性脱硫菌的脱硫基因的保守性,PCR扩增、克隆了LSSEJ-1和R-9的整个脱硫操纵子,结果表明脱硫基因在这两株菌中也是高度保守的。与IGTS8的相关脱硫基因相比较:R-9的dszA与IGTS8的dszA同源性为99.6%,LSSEJ-1的dszA与IGTS8的dszA的同源性为99.9%;R-9和LSSEJ-1的dszB的同源性与IGTS8的dszB都是99.9%;R-9的dszC与IGTS8的dszC同源性是99.9%,LSSEJ-1的dszC与IGTS8的dszC同源性为99.1%。对比研究认为专一性脱硫嗜温菌的脱硫基因的起源可能相同。  相似文献   

11.
Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.  相似文献   

12.
Chen H  Zhang WJ  Cai YB  Zhang Y  Li W 《Bioresource technology》2008,99(15):6928-6933
The effect of 2-hydroxybiphenyl (2-HBP), the end product of dibenzothiophene (DBT) desulfurization via 4S pathway, on cell growth and desulfurization activity was investigated by Microbacterium sp. The experimental results indicate that 2-HBP would inhibit the desulfurization activity. Providing 2-HBP was added in the reaction media, the DBT degradation rate decreased along with the increase of 2-HBP addition. By contrast, cell growth would be promoted in the addition of 2-HBP at a low concentration (<0.1mM). At high concentration of 2-HBP, the inhibition on the cell growth occurred. Meanwhile, the inhibitory effect of 2-HBP on DBT desulfurization activity was tested both in the oil/aqueous two-phase system and the aqueous system. A mathematical model was developed to explain the product formation kinetics with DBT as the sole sulfur source. The predicted results were close to the experimental data, it elucidated that along with the 2-HBP accumulation, the inhibitory effect of 2-HBP on DBT desulfurization and cell growth was enhanced.  相似文献   

13.
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP.  相似文献   

14.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA,DszB,DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBT-MO)和DBT-砜单加氧酶(DszA or DBTO2-MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2),FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA,DszB,DszC和DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA,DszB,DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%,3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

15.
AIMS: To study the desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic component of fossil fuels, by two bacteria namely Rhodococcus sp. and Arthrobacter sulfureus isolated from oil-contaminated soil/sludge in order to use them for reducing the sulphur content of diesel oil in compliance with environmental regulations. METHODS AND RESULTS: The desulphurization pathway of DBT by the two bacteria was determined by gas chromatography (GC) and GC-mass spectrometry. Both organisms were found to produce 2-hydroxy biphenyl (2-HBP), the desulphurized product of DBT. Sulphur contents of culture supernatants of Rhodococcus sp. and A. sulfureus grown with DBT as sole sulphur source were analysed by X-ray fluorescence indicating sulphur levels of 8 and 10 ppm, respectively, as compared with 27 ppm in control. In order to study desulphurization of diesel oils obtained from an oil refinery, resting cell studies were carried out which showed a decrease of about 50% in sulphur content of the oil obtained from the hydrodesulphurization (HDS) unit of the refinery. CONCLUSIONS: Rhodococcus sp. and A. sulfureus selectively remove sulphur from DBT to form 2-HBP. Application of these bacteria for desulphurization of diesel showed promising potential for decreasing the sulphur content of diesel oil. SIGNIFICANCE AND IMPACT OF THE STUDY: The process of microbial desulphurization described herein can be used for significantly reducing the sulphur content of oil, particularly, after the process of HDS which would help in meeting the regulatory standards for sulphur level in diesel oil.  相似文献   

16.
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT → DBT sulfone → 2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBT-desulfurizing ability than other microorganisms reported previously.  相似文献   

17.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号