首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclooxygenase (COX)-2 expression and prostaglandin E(2) (PGE(2)) secretion are increased in prostatic intraepithelial neoplasia (PIN) and prostate cancer. PGE(2) biosynthesis by cyclooxygenase (COX)-2 plays a pivotal role in inflammation and carcinogenesis. One of the critical proinflammatory cytokines in the prostate is interleukin-6 (IL-6). We hypothesized that increased expression of COX-2, with resultant increased levels of PGE(2) in human PIN cells, activates the IL-6 signaling pathway. We demonstrate an autocrine upregulation of PGE(2) mediated by IL-6 in a human PIN cell line. We further demonstrate that PGE(2) stimulates soluble IL-6 receptor (sIL-6R) release, gp130 dimerization, Stat-3 protein phosphorylation, and DNA binding activity. These events, induced by PGE(2), lead to increased PIN cell growth. Treatment of PIN cells with a selective COX-2 inhibitor decreases cell growth. Finally, PGE(2)-stimulated PIN cell growth was abrogated by the addition of IL-6 neutralizing antibodies. These data provide mechanistic evidence that increased expression of COX-2/PGE(2) contributes to prostate cancer development and progression via activation of the IL-6 signaling pathway.  相似文献   

3.
4.

Background  

The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Mice deficient in the G-protein alpha subunit G(i)alpha(2) spontaneously develop colitis and colon cancer. IL-11 is a pleiotropic cytokine known to protect the intestinal epithelium from injury in animal models of colitis and is produced by subepithelial myofibroblasts in response to inflammatory mediators including TGF-beta, IL-1beta, and PGE(2). Arachidonic acid release and subsequent PGE(2) production is significantly decreased in the colonic mucosa of G(i)alpha(2)-/- mice, and we hypothesized that this would affect mucosal IL-11 production. Mucosal levels of IL-11 were found to be significantly decreased in G(i)alpha(2)-/- mice despite the presence of mild colitis. Primary cultures of G(i)alpha(2)-/- intestinal and colonic myofibroblasts (IMF and CMF, respectively) produced less basal and TGF-beta or IL-1beta-stimulated IL-11 mRNA and protein than wild-type cells. Inhibitors of ERK or p38 MAPK activation dose dependently inhibited IMF and CMF IL-11 production in response to TGF-beta stimulation, whereas 16,16 dimethyl-PGE(2) and prostanoid receptor subtype-selective agonists induced IL-11 production. Treatment of animals with the EP4-specific agonist ONO-AE1-329 resulted in enhanced mucosal levels of IL-11, and increased IL-11 production by ex vivo cultured CMF. Modulation of cAMP levels produced diverging results, with enhancement of TGF-beta-induced IL-11 release in IMF pretreated with 8-Br-cAMP and inhibition in cells treated either with pertussis toxin or the PKA inhibitor H-89. These data suggest a physiological role for prostaglandins, MAPK signaling, and cAMP signaling for the production of myofibroblast-derived IL-11 in the mouse intestinal mucosa.  相似文献   

15.
Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1alpha protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl2) induced accumulation of HIF-1alpha protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1alpha protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1alpha protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1alpha, suggesting that DFX-induced increase of HIF-1alpha and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1alpha accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1alpha accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1alpha protein by modulating cyclooxygenase-2 signaling pathway.  相似文献   

16.
The purpose of this study was to examine the effects of IL-1 beta on integrin expression in MG-63 human osteosarcoma cells. Human recombinant IL-1 beta (rIL-1 beta) produced significant increases in both alpha 2- and alpha 5-subunit mRNA levels, as well as a smaller increase in alpha v-subunit mRNA. In contrast, IL-1 beta decreased alpha 4-subunit mRNA levels by approximately 30% relative to untreated controls. These findings suggest that human IL-1 beta differentially regulates expression of integrins. When cultures were treated with both IL-1 beta and the cyclooxygenase inhibitor, indomethacin, the expression of alpha 2-, alpha 5-, and alpha v-subunit mRNA levels were dramatically increased relative to untreated controls; co-treatment with 0.5 mM prostaglandin E2 (PGE2) partially reversed this effect. Indomethacin alone did not affect integrin mRNA levels. Treatment with IL-1 beta or IL-1 beta + indomethacin also induced significant changes in MG-63 morphology (i.e., increased cell elongation) and increased the ability of cells to contract collagen gels. PGE2 reversed the above effects on cell morphology and gel contraction. These findings indicate that (a) IL-1 beta differentially regulates the expression of integrins and (b) that PGE2, which is induced by IL-1 beta, may provide a negative feedback loop which counteracts the stimulatory effect of IL-1 beta on integrin gene expression. It is suggested that products of inflammation may affect cell behavior by differentially regulating the expression of various integrins.  相似文献   

17.
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号