首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Download : Download high-res image (96KB)
  2. Download : Download full-size image
  相似文献   

2.
  1. Download : Download high-res image (108KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
The in vitro evolution of interspecific associations between pulps and enamel organs of embryonic Mouse and Rabbit tooth germs was studied. It was shown that young pulps controlled the three-dimensional structure of tooth germs. It was also shown that dental papillae cells and dental epithelial cells, after monolayer culture, did not loose their respective ability to direct the histogenesis of teeth.  相似文献   

5.
To understand the different behaviour of cytochrome P-450 systems in kinetics as well as in the demethylase activity, sedimentation and molecular weight experiments have been carried out with the following results: 1) Sedimentation coefficients of solubilized P-450 and P-450 LM2 fractions amount to 24 +/- 4 [S] and 12.8 +/- 1.2 [S], respectively. Molecular weights were determined to be 1.0 +/- 0.2 . 10(6) and 3.0 +/- 0.5 . 10(5) Dalton. 2) Triton N-101 provokes splitting of the associated structure both of solubilized P-450 and P-450 LM2; this effect is reversible. 3) The dissociation depends not only on the absolute concentration of Triton but rather on the Triton P-450 ratio. The dissociation curves of solubilized P-450 and P-450 LM2 are similar in shape and in the Triton/P-450 ratio dependence. 4) In the presence of small concentrations of Triton a more complicated dissociation behaviour was observed with broad integral distribution of the sedimentation coefficients. 5) The ionic detergent cholate splits the associated structure of P-450 LM2 at considerably higher concentrations in comparison with Triton-N 101. 6) Addition of reductase causes a decrease of sedimentation coefficients and molecular weights of solubilized P-450. The same effect in P-450 LM2 could be observed only in the presence of phospholipids.  相似文献   

6.
Redox metals and neurodegenerative disease   总被引:6,自引:0,他引:6  
Multiple lines of evidence implicate redox-active transition metals as mediators of oxidative stress in neurodegenerative diseases. Among the recent research discoveries is the finding that transition metals bind to proteins associated with neurodegeneration, including the prion protein. Whereas binding in the latter case may serve an antioxidant function, adventitious binding of metals to other proteins appears to preserve their catalytic redox activity in a manner that disturbs free radical homeostasis. Alterations in the levels of copper- and iron-containing metalloenzymes, involved in processing partially reduced oxygen species, are also likely to contribute to altered redox balance in neurodegenerative diseases. Nonetheless, even in familial forms of amyotrophic lateral sclerosis linked to mutations in superoxide dismutase, it is unclear whether an altered enzyme activity or, indirectly, a disturbance in transition-metal homeostasis is involved in the disease pathogenesis.  相似文献   

7.
8.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

9.
BackgroundThe binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism.Scope of reviewA rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies.General significanceThe thermodynamic characterization of metal ion–protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases.Major conclusionsIsothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

10.
Biocorrosion: towards understanding interactions between biofilms and metals   总被引:18,自引:0,他引:18  
The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.  相似文献   

11.
The interaction between Cu2+ and a few uracil derivatives has been investigated by means of electron spin resonance and optical absorption studies. It could be shown that a charge transfer interaction occurs. Its strength depends upon the electron attracting or releasing properties of the substituents of the nucleobase.  相似文献   

12.
The electron paramagnetic resonance (epr) properties of cytochrome c oxidase have been examined with special attention to the effect of added ligands and of interactions between the redox components. The fully oxidized preparations have a very small g6 signal which increases greatly as the redox potential is made more negative, a process exactly paralleling the disappearance of the g3 signal. The potential for half appearance or disappearance (Em), respectively, is 380 mV at pH 7.0 and 300 mV at pH 8.5. This identifies the changes as accompanying reduction of cytochrome a3 because the Em of the “invisible copper” is 340 mV and pH independent. Nitric oxide (NO) binds reduced cytochrome a3 to form a paramagnetic species. This resulting epr signal is strongly dependent on the redox state of cytochrome a, another expression of heme-heme interaction in cytochrome oxidase. The NO compound is also unique in that under the appropriate conditions three of the four redox components (cytochrome a3, cytochrome a, and the “visible” copper) are epr active. In potentiometric titrations in the presence of azide the formation of the azide compound responsible for the g2.9 signal appears to require reduction of both cytochrome a3 and the “invisible copper.” An internal sulfur compound is present which, at alkaline pH values, can bind the heme responsible for the g6 signal and change it to a low-spin sulfur compound with a signal at approximately g2.6. Evidence is also presented for the cytochrome c oxidase in situ being an equilibrium mixture of two different conformational states.  相似文献   

13.
14.
The interaction between Cu2+ and a few uracil derivatives has been investigated by means of electron spin resonance and optical absorption studies. It could be shown that a charge transfer interaction occurs. Its strength depends upon the electron attracting or releasing properties of the substitutents of the nucleobase.  相似文献   

15.
16.
17.
18.
Immobilized metal affinity chromatography (IMAC) of proteins containing poly-histidine fusion tags is an efficient research tool for purifying recombinant proteins from crude cellular feedstocks at laboratory scale. Nevertheless, to achieve successful purification of large amounts of the target protein for critical therapeutic applications that demand the precise removal of fusion tags, it is important to also take into consideration issues such as protein quality, efficiency, cost effectiveness, and optimal affinity tag choice and design. Despite the many considerations described in this article, it is expected that enhanced selectivity, the primary consideration in the field of protein separation, will continue to see the use of IMAC in solving new purification challenges. In addition, the platform nature of this technology makes it an ideal choice in purifying proteins with unknown properties. Finally, the unique interaction between immobilized metal ions and poly-histidine fusion tag has enabled new developments in the areas of biosensor, immunoassay, and other analytical technologies.  相似文献   

19.
Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号