首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

2.
Kinetin has a stimulating effect in the Avena straight-growth test. The action of different concentrations of kinetin, 2.5 × 10?7, 2.5 × 10?6 and 2.5 × 10?5M, in combination with different concentrations of IAA was studied in this test. It was shown that the effect of low IAA concentrations, 0.25 × 10?7 and 1 × 10?7M, was strongly enhanced by the addition of all the kinetin concentrations investigated. The effect of the highest IAA concentrations, 25 × 10?7 and 100 × 10?7M, on the other hand, was inhibited relatively strongly by the highest employed concentration of kinetin. The results are explained as due to a kinetin-produced increase of auxin in the coleoptile segment, which in combination with low IAA concentrations can lead to a growth stimulation and with high IAA concentrations to a growth inhibition. Since kinetin in purification and chromatography of auxin can partly follow IAA, thereby affecting the quantitative yield, it is emphasized that, prior to the test, auxin extracts containing cytokinins should be freed from the latter by, for example, gel filtration or paper electrophoresis.  相似文献   

3.
The relationship between the flank growth of oat (Avena sativaL. cv. Victory) coleoptiles and the distribution of endogenousindole-3-acetic acid (IAA) and growth inhibitor(s) in the coleoptileswas studied for the second positive phototropic curvature inducedby a continuous unilateral illumination with white light (0.1W.m–2). The phototropic curvature was caused by growthinhibition at the lighted side and growth promotion at the shadedside. Using electron capture detection gas chromatography, weanalyzed the distribution of endogenous IAA in phototropicallyresponding oat coleoptiles and found that the IAA was evenlydistributed over the lighted and shaded sides during the phototropicresponse; there was also no detectable difference in the amountsof IAA between phototropically stimulated and non-irradiatedcoleoptiles. By contrast, oat coleoptile straight-growth testresults showed that the amount of unknown acidic growth inhibitor(s),different from abscisic acid, increased in the lighted halfof the coleoptiles and decreased in the shaded half, as comparedto the amount in the non-irradiated half. These data suggestthat the phototropic curvature of oat coleoptile is inducedby a difference in lateral flank growth through a lateral gradientof endogenous growth inhibitor(s) rather than of IAA. (Received February 10, 1988; Accepted July 29, 1988)  相似文献   

4.
Went's classical experiment on the diffusion of auxin activity from unilaterally illuminated oat coleoptile tips (Went 1928), was repeated as precisely as possible. In agreement with Went's data with theAvena curvature assay, the agar blocks from the illuminated side of oat (Avena sativa L. cv. Victory) coleoptile tips had, on an average, 38% of the auxin activity of those from the shaded side. However, determination of the absolute amounts of indole-3-acetic acid (IAA) in the agar blocks, using a physicochemical assay following purification, showed that the IAA was evenly distributed in the blocks from the illuminated and shaded sides. In the blocks from the shaded and dark-control halves the amounts of IAA were 2.5 times higher than the auxin activity measured by theAvena curvature test, and in those from the illuminated half even 7 times higher. Chromatography of the diffusates prior to theAvena curvature test demonstrated that the amounts of two growth inhibitors, especially of the more polar one, were significantly higher in the agar blocks from the illuminated side than in those from the shaded side and the dark control. These results show that the basic experiment from which the Cholodny-Went theory was derived, does not justify this theory. The data rather indicate that phototropism is caused by the light-induced, local accumulation of growth inhibitors against a background of even auxin distribution, the diffusion of auxin being unaffected.Abbreviation IAA indole-3-acetic acid  相似文献   

5.
The curvature of corn seedling (Zea mays L. Mo17 × B73) coleoptiles which had been half-decapitated and supplied with [14C]indoleacetic acid (IAA) (3.2 micromolar, 51 milliCuries per millimole) was determined during a 3-hour period of gravitational stimulation. Curvature of such half-decapitated coleoptiles was found to be similar in rate and extent to that of intact coleoptiles responding to gravity. Gravitational stimulation was accomplished by reorienting seedlings to a horizontal position, either up or down with respect to the removed half of the coleoptile tips.

The first set of experiments involved placing aluminum foil barriers along one of the two cut surfaces to restrict the movement of IAA into tissues. The initiation and extent of curvature of these half-decapitated coleoptiles was dependent upon the orientation of the removed half-tip and the accompanying barrier. The distribution of radioactivity from [14C] IAA after 3 hours indicated that the specific lateral movement of label was also dependent upon orientation of the removed half-tip of the coleoptile. A specific movement to the lower side of approximately 14% of the total recovered radioactivity was found in coleoptiles in which the [14C]IAA was supplied across a transverse cut surface. In contrast, specific movement of only 4% was found for application across a longitudinal cut surface.

A second series of experiments was conducted using 1.0 and 3.2 micromolar [14C]IAA (51 milliCuries per millimole) supplied to half-decapitated coleoptiles without inserted barriers. The 3.2 micromolar concentration adequately replaced the removed coleoptile half-tips in terms of straight growth, but it did not result in as much curvature as shown by coleoptiles of intact seedlings. The 1 micromolar concentration was not adequate to replace the removed half-tip in straight growth, but resulted in gravitropic curvature nearly as great as that produced by the higher concentration.

The data presented here suggest that strong auxin gradients are not produced in response to gravity stimulation based on the recovered radioactivity from [14C]IAA. However, it is evident that auxin is required for the development of normal gravitropic responses. It is possible, therefore, that an important early role of this movement is not to cause a large stimulation of growth on the lower side but to decrease growth on the upper side of a gravitropically responding coleoptile.

  相似文献   

6.
Schopfer P 《Plant physiology》1993,103(2):351-357
The present debate on the validity of the "acid-growth theory" of auxin (indole-3-acetic acid, IAA) action concentrates on the question of whether IAA-induced proton excretion into the cell wall is quantitatively sufficient to provide the shift in pH that is required to explain IAA-induced growth (see D.L. Rayle, R.E. Cleland [1992] Plant Physiol 99:1271-1274 for a recent apologetic review of the acid-growth theory). In the present paper a null-point method has been employed for determining the growth-effective cell-wall pH in the presence and absence of IAA after 60 min of treatment. Elongation of abraded maize (Zea mays L.) and oat (Avena sativa L.) coleoptile segments was measured with the high resolution of a displacement transducer. The abrasion method employed for rendering the outer epidermal cell wall permeable for buffer ions was checked with a dye-uptake method. Evidence is provided demonstrating that externally applied solutes rapidly and homogeneously penetrate into the epidermal wall, whereas penetration into the inner tissue walls is strongly retarded. "Titration" curves of IAA-induced and basal elongation were determined by measuring the promoting/inhibiting effect of medium pH under iso-osmotic conditions in the range of pH 4.5 to 6.0. In maize, the null point (no pH-dependent change in elongation rate after 5-10 min of treatment with 10 mmol L-1 citrate buffer) was pH 5.00 after 60 min of IAA-induced growth, and the null-point pH determined similarly in IAA-depleted tissue (10 times smaller elongation rate) was 5.25. Corresponding titration curves with Avena segments led to slightly lower null-point pH values both in the presence and absence of IAA-induced growth. After induction of acid-mediated extension by 1 [mu]mol L-1 fusicoccin (FC) in maize, the null-point pH shifted to 3.9. At 0.5 [mu]mol L-1, FC induced the same elongation rate as IAA but a 9-fold larger rate of proton excretion. At 0.033 [mu]mol L-1, FC induced the same rate of proton excretion as IAA but had no appreciable effect on elongation. The implications of these results against the background of recent attempts to revitalize the acid-growth theory of IAA action are discussed.  相似文献   

7.
Osmoregulation by Oat Coleoptile Protoplasts (Effect of Auxin)   总被引:5,自引:1,他引:4       下载免费PDF全文
The effect of auxin on the physiology of protoplasts from growing oat (Avena sativa L.) coleoptiles was investigated. Protoplasts, isolated iso-osmotically from peeled oat coleoptile segments, were found to swell steadily over many hours. Incubated in 1 mM CaCl2, 10 mM KCl, 10 mM 2-(morpholino)ethanesulfonic acid/1,3-bis-[tris(hydroxymethyl)methylamino]propane, pH 6.5, and mannitol to 300 milliosmolal, protoplasts swelled 28.9% [plus or minus] 2.0 (standard error) after 6 h. Addition of 10 [mu]M indoleacetic acid (IAA) increased swelling to 41.1% [plus or minus] 2.1 (standard error) after 6 h. Swelling (in the absence of IAA) was partially dependent on K+ in the bath medium, whereas auxin-induced swelling was entirely dependent on K+. Replacement of mannitol in the bath by Glc increased swelling (in the absence of IAA) and eliminated auxin-induced swelling. Swelling with or without IAA was inhibited by osmotic shock and was completely reversed by 0.1 mM NaN3. Sodium orthovanadate, applied at 0.5 mM, only gradually inhibited swelling under various conditions but was most effective with protoplasts prepared from tissue preincubated in vanadate. Our data are interpreted to suggest that IAA increases the conductance of the plasma membrane to K+.  相似文献   

8.
Cotton (Gossypium hirsutum L. cv LG102) seedlings raised from seeds exposed to 100 [mu]M norflurazon (NFZ) during imbibition contained reduced levels of free abscisic acid (ABA) and were visibly achlorophyllous. Exposure of untreated cotton seedlings to ethylene concentrations >1 [mu]L/L for 24 h resulted in cotyledon abscission. In contrast, exposure of NFZ-treated seedlings to concentrations of ethylene [less than or equal to]50 [mu]L/L elicited no cotyledon abscission. Application of ABA, an ABA analog, or jasmonic acid to NFZ-treated seedlings restored ethylene-induced abscission. Isolated cotyledonary node explants prepared from NFZ-treated seedlings exhibited an altered dose-response pattern of ethylene-induced petiole abscission. Endogenous levels of free IAA were unaltered in NFZ-treated seedlings. Ethylene treatment (50 [mu]L/L, 24 h) had no effect on free indoleacetic acid (IAA) levels in either control or NFZ-treated seedlings. Levels of conjugated (ester plus amide) IAA were substantially increased in NFZ-treated seedlings regardless of ethylene treatment. These results indicate that endogenous ABA plays an essential, but physiologically undefined, role in ethylene-induced cotyledon abscission in cotton.  相似文献   

9.
An acid ether-soluble, strongly growth-stimulating substance revealed by the Avena coleoptile straight-growth test in methanol extracts from bean seedlings (Phaseolus vulgaris L.) was identified as indol-3yl-aspartic acid (IAAsp). Points of agreement between synthetic IAAsp and the investigated growth stimulator were indicated by chromatographic behavior, elution volume in gel filtration, mobility in paper electrophoresis, “colour reaction” with DMCA reagent, ability to form indol-3yl-acetic acid (IAA) and aspartic acid after hydrolysis and, finally, biological activity in the Avena test. Furthermore, some experiments demonstrated the occurrence of an inhibitor in extracts from light-grown tissue. This masked the stimulation of IAAsp in the Avena test when the extracts had been chromatographed in isopropanol: NH3:H2 O. A comparison of the levels of IAAsp between green and etiolated tissue did not reveal any distinct difference, demonstrating that the IAA conjugate IAAsp does not participate in the regulation of the photomorphogenesis.  相似文献   

10.
The major ether-soluble, growth-stimulating substance detected by the Avena coleoptile straight-growth test in extract from sprouting buds of Scots pine (Pinus silvestris L.) was identified as indole-3-acetic acid by Rf values in 5 solvent systems and by its elution volume in ethanol on a Sephadex LH-20 column. When the substance was applied to the growth solution of wheat roots in a special test the growth in length of the roots was at first inhibited, but growth was recovered after about 6 hours in the same manner as when small quantities of IAA were applied. The extracts also contained large amounts of growth inhibitors which interfered with the auxin response if they were not removed.  相似文献   

11.
Parker KE  Briggs WR 《Plant physiology》1990,94(4):1763-1769
We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature.  相似文献   

12.
Coleoptiles of Avena possessed the capacity to degrade infiltrated indole-3-acetic acid (IAA). This activity decreased along the length of the coleoptile from apex to base on the bases of fresh weight, dry weight and protein; the apical 1 cm segment degraded more IAA than segments from other parts of the coleoptile. The naturally occurring inhibitor of the IAA oxidase activity increased in concentration up to 20 mm from the coleoptile apex; beyond, it decreased gradually towards the base. The spatial distribution of this inhibitor does not explain the gradient in IAA oxidase activity. Growth in length of the coleoptile and the IAA inactivating capacity of the apical 1 cm segment, increased 5- and 4,4-fold, respectively, between the ages of 70 and 130 h; but auxin secretion into agar platelets by the apical 2 mm of the coleoptile registered only a 2.7-fold increase. Deseeding and derooting the seedlings reduced the subsequent growth, diffusible auxin content and the IAA oxidase activity of the coleoptiles; derooting proved to be more deleterious than deseeding. A parallel reduction was evident in auxin content and IAA degrading activity following these treatments. Application of the cytokinin 6-benzylaminopurine (BAP) to coleoptiles of derooted seedlings failed to influence their capacity to degrade IAA. Nor was the activity of the aldehyde oxidase, which converts indole-3-acetaldehyde (IAAld) to IAA, affected by such treatment.  相似文献   

13.
The initial dose-response curves for auxin-induced elongation growth of Zea mays L. coleoptile segments and simultaneously measured changes of pH of the incubation medium were studied. It was found that these curves are bell-shaped on all occasions and that at all IAA concentrations studied acidification of the incubation medium took place. The optimum response for IAA-induced elongation growth and acidification of the incubation medium was 10−5 and 10−4 M IAA, respectively. The regression curves and correlation coefficients between magnitude of the growth response and acidification of the incubation medium indicated a close relationship between these sets of data over a wide range of IAA concentrations.  相似文献   

14.
The role of free indole-3-acetic acid (IAA) in the endosperm of Avena sativa L. seedlings was investigated to determine its contribution to free IAA in the shoot. [2-14C]IAA was injected into the endosperm of darkgrown seedlings and the transport and metabolism of the [14C]-labeled compounds determined. It was concluded that translocation of free IAA directly from the endosperm is probably not a significant source of free IAA in the shoot, mainly because even small amounts of [14C]IAA introduced into the endosperm were rapidly metabolized. This suggested that, in Avena, free IAA does not normally exist in the liquid endosperm.  相似文献   

15.
The inhibitory mode of action of jasmonic acid (JA) on the growth of etiolated oat (Avena sativa L. cv. Victory) coleoptile segments was studied in relation to the synthesis of cell wall polysaccharides using [14C]glucose. Exogenously applied JA significantly inhibited indoleacetic acid (IAA)-induced elongation of oat coleoptile segments and prevented the increase of the total amounts of cell wall polysaccharides in both the noncellulosic and cellulosic fractions during coleoptile growth. JA had no effect on neutral sugar compositions of hemicellulosic polysaccharides but substantially inhibited the IAA-stimulated incorporation of [14C]glucose into noncellulosic and cellulosic polysaccharides. JA-induced inhibition of growth was completely prevented by pretreating segments with 30 mm sucrose for 4 h before the addition of IAA. The endogenous levels of UDP-sugars, which are key intermediates for the synthesis of cell wall polysaccharides, were not reduced significantly by JA. Although these observations suggest that the inhibitory mode of action of JA associated with the growth of oat coleoptile segments is relevant to sugar metabolism during cell wall polysaccharide synthesis, the precise site of inhibition remains to be investigated.Abbreviations JA jasmonic acid - ABA abscisic acid - IAA indoleacetic acid - T 0 minimum stress relaxation time - TFA trifluoroacetic acid - TCA trichloroacetic acid - HPLC high-performance liquid chromatography - EtOAc ethyl acetate - TLC thin-layer chromatography - JA-Me methyl jasmonate - GLC-SIM gas-liquid chromatography-selected ion monitoring  相似文献   

16.
Shoots grown out from aspen root sections in light or in darkness were extracted and the content of growth-regulating substances in various fractions was determined with the Avena coleoptile straight-growth assay. The most obvious difference was obtained for the inhibitor β fraction. This was about ten times more active in the light-grown than in the dark-grown shoots. Some indications of more growth inhibitory material in ether-insoluble fractions of light-grown plants were also obtained. The stimulation obtained at the Rf of indol-3-yl-acetic acid was somewhat lower in the etiolated shoots than in the light-grown ones.  相似文献   

17.
The intial phases of auxin-induced growth in coleoptile segments of Avena sativa L. were investigated using a high resolution growth recording technique, based on an angular position sensing transducer. The first response to the hormone is a slight, transient reduction of the growth rate lasting about 5 min. After this phase growth rate increases to a maximum. The duration of the increase and the maximum clearly depend on the concentration of the hormone. With increasing auxin concentration the duration of the growth rate increase is reduced from about 80 min in 10-9 M indoleacetic acid (IAA) to about 14 min in 10-4 M IAA. After the maximum the growth rate declines. Looking at the maximum of the growth rate, we obtained a dose-response curve with a sharp increase between 10-9 M and 10-6 M IAA and a slight decline between 10-6 M and 10-4 M IAA. This result is confirmed by growth rates measured one and two hours after the application of the hormone.Abbreviations IAA indoleacetic acid  相似文献   

18.
Seedings of winter wheat (Triticum aestivum L. cv. Kharkov MC 22) were grown at 24 C (unhardened) and 4 C (hardened). Indoleacetic acid (IAA) was added to excised coleoptile segments after lengthy incubation and their responses were determined by photometric auxanometry at both 25 C and 5 C. The segments' rates of uptake of 14CIAA were also compared at both temperatures. Cold hardening had no significant effect on the rates of elongation and uptake in a saturating concentration of IAA (2 to 10 μM) at either temperature. Elongation was more sensitive to temperature of measurement than was uptake. At suboptimal concentrations of IAA and 25 C, hardened coleoptiles took up [2-14C]-IAA twice as fast but elongated half as fast as unhardened coleoptiles. This and the lack of effect of cold hardening on apparent uptake of [1-14C]-IAA raised the possibility that a higher rate of IAA-decarboxylation was coupled with the higher rate of uptake of IAA by hardened coleoptiles. Homeostatic hormonal regulation was also evident in the same endogenous rates of elongation of segments of cold-hardened and unhardened coleoptiles.  相似文献   

19.
The growth-inhibiting effect of inhibitor β, extracted from the potato variety Majestic, was compared with the effect of abscisic acid by means of the Avena coleoptile straight-growth test. Dose-response curves showed that total growth inhibition is attained by inhibitor β, but this is never caused by abscisic acid even in high unphysiological doses. By chromatographic methods inhibitor β can be separated into three active components. One of these is a phenolic substance with weak growth-inhibiting effect. The two others contribute equally to the inhibitory effect, and one of them is probably abscisic acid. Beside these inhibiting substances there are components without inhibitory effect, many of phenolic character, included in the inhibitor β complex.  相似文献   

20.
The main enzymatic oxidation products of IAA have been tested for biological activity, using as bioassay the straight-growth test ofAvena coleoptile. After being purified by rechromatography, none of these products (including methyleneoxindole) exhibited biological activity within the wide range of concentrations employed; consequently, the results accord with the evidence that IAA is the true hormone of plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号