首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin-like growth factor-I (IGF-I) is a key regulator of skeletal muscle growth in vertebrates, promoting mitogenic and anabolic effects through the activation of the MAPK/ERK and the PI3K/Akt signaling pathways. Nutrition also affects skeletal muscle growth, activating intracellular pathways and inducing protein synthesis and accretion. Thus, both hormonal and nutritional signaling regulate muscle mass. In this context, plasma IGF-I levels and the activation of both pathways in response to food were evaluated in the fine flounder using fasting and refeeding trials. The present study describes for the first time in a nonmammalian species that the MAPK/ERK and PI3K/Akt are activated by exogenous circulating IGF-I, as well as showing that the MAPK/ERK pathway activation is modulated by the nutritional status. Also, these results show that there is a time-dependent regulation of IGF-I plasma levels and its signaling pathways in muscle. Together, these results suggest that the nutritionally managed IGF-I could be regulating the activation of the MAPK/ERK and the PI3K/Akt signaling pathways differentially according to the nutritional status, triggering different effects in growth parameters and therefore contributing to somatic growth in fish. This study contributes to the understanding of the nutrient regulation of IGF-I and its signaling pathways in skeletal muscle growth in nonmammalian species, therefore providing insight concerning the events controlling somatic growth in vertebrates.  相似文献   

2.
Temperature profoundly influences growth of heterothermic vertebrates. However, few studies have investigated the effects of temperature on growth and insulin-like growth factor I (IGF-I) in fishes. The aim of this study was to examine effects of temperature on growth and establish whether IGF-I may mediate growth at different temperatures in southern flounder, Paralichthys lethostigma. In two experiments, juvenile flounder were reared at 23 and 28 degrees C and growth was monitored for either 117 or 197 days. Growth was similar across treatments in both experiments until fish reached approximately 100 mm total length. Body size then diverged with fish at 23 degrees C ultimately growing 65-83% larger than those at 28 degrees C. Muscle IGF-I mRNA, plasma IGF-I, and hepatosomatic index (HSI) were significantly higher in flounder at 23 degrees C, whereas hepatic IGF-I mRNA abundance did not differ with treatment. Muscle IGF-I mRNA was correlated with HSI, while plasma IGF-I was correlated with body size, hepatic IGF-I mRNA, and HSI. These results demonstrate a strong effect of temperature on flounder growth and show that temperature-induced variation in growth is associated with differences in systemic IGF-I and local (i.e., muscle) IGF-I mRNA levels. The results also support the use of plasma IGF-I and HSI as indicators of flounder growth status.  相似文献   

3.
The complete amino acid sequence of human insulin-like growth factor I (IGF-I), a polypeptide isolated from serum, has been determined. IGF-I is a single chain polypeptide of 70 amino acid residues cross-linked by three disulfide bridges. The calculated molecular weight is 7649. IGF-I displays obvious homology to proinsulin: positions 1 to 29 are homologous to insulin B chain and positions 42 to 62 to insulin A chain. A shortened "connecting" peptide with 12 residues (positions 30 to 41) compared to 30 to 35 in proinsulins shows no homology to proinsulin C peptide. An octapeptide sequence at the COOH-terminal end is also a feature not found in proinsulins. The number of differences in amino acid positions between IGF-I and insulins suggests that duplication of the gene of the common ancestor of proinsulin and IGF occurred before the time of appearance of the vertebrates. Of the 19 residues known to be invariant in all insulins so far sequenced, only glutamine A5 and asparagine A21 are replaced in IGF-I by glutamic acid and alanine, respectively. The fact that all half-cystine and glycine residues and most nonpolar core residues of the insulin monomer are conserved is compatible with a three-dimensional structure of IGF-I similar to that of insulin.  相似文献   

4.
Insulin-like growth factor-I (IGF-I) is an important regulator of growth and development in vertebrates. Both the endocrine and paracrine actions of IGF-I are mediated through ligand-binding to a membrane-bound IGF-I receptor (IGF-IR). The characterization of this receptor and subsequent expression studies thus help elucidate the endocrine regulation of developmental processes. As other flatfish species, the Atlantic halibut (Hippoglossus hippoglossus) undergoes a dramatic larval metamorphosis. This process is largely under endocrine control, and data indicate that IGF-I could be a key regulator. IGF-I content increases up to late pre-metamorphosis and decreases during metamorphosis. The IGF-IR has, however, not been studied during flatfish metamorphosis. To examine IGF-IR gene expression, two IGF-IR mRNA were cloned and sequenced. These partial sequences share high identity (>or=95%) and similarity (>or=97%) with other fish IGF-IR and lower identity (>or=77%) and similarity (>or=83.5%) with Japanese flounder insulin receptors. The expression of mRNA for both IGF-IR was analyzed by quantitative real-time RT-PCR during six larval developmental stages from pre- to post-metamorphosis. IGF-IR1 and IGF-IR2 mRNA are differentially expressed during metamorphosis, but if this indicates an isoform-specific regulation of developmental processes by circulating and/or locally-secreted IGF-I is unclear. Both IGF-IR genes are down-regulated in halibut larvae experiencing arrested metamorphosis, suggesting the IGF-I system is critical for metamorphic success in halibut.  相似文献   

5.
By means of a cloning strategy employing the polymerase chain reaction, we have isolated and characterized cDNAs for Xenopus laevis insulin-like growth factor I (IGF-I). These cDNAs encode a primary IGF-I translation product of 153 residues that demonstrates considerable amino acid sequence similarity with IGF-IA peptides from other species. Fifty-seven of 70 residues of the mature protein are identical among human, rat, chicken, and Xenopus IGF-I, while less amino acid conservation is found at the COOH-terminus (25/35 identities) or at the NH2-terminus (24/48 identities) of the precursor protein. Despite the lower degree of structural similarity at the NH2-terminus, in vitro studies of IGF-I biosynthesis and proteolytic processing support a conserved function for the atypically long 48 residue NH2-terminal signal sequence in directing the nascent IGF-I peptide through the secretory pathway. The 5'-untranslated region of Xenopus IGF-I mRNA matches the human, rat, and chicken sequences in greater than 90% of 279 nucleotides. IGF-I mRNAs from all four species encode a conserved upstream open reading frame of 14 amino acids starting 240-250 nucleotides 5' to the translation start site, suggesting a possible role for this region in modulating IGF-I gene expression. The X. laevis IGF-I gene is transcribed and processed into three mRNAs of 1.6, 2.1, and 3.0 kilobases in liver, and IGF-I mRNAs can be detected in liver, lung, heart, kidney, and peritoneal fat of adult animals. These studies demonstrate that both the IGF-I protein precursor and potential regulatory regions of IGF-I mRNA have been conserved during vertebrate evolution, and indicate that like several other polypeptide growth factors, IGF-I may be of fundamental importance in regulating specific aspects of growth and development in all vertebrates.  相似文献   

6.
Insulin-like growth factor I (IGF-I) is a polypeptide hormone that regulates growth during all stages of development in vertebrates. To examine the mechanisms of the sexual growth dimorphism in the Tongue sole (Cynoglossus semilaevis), molecular cloning, expression analysis of IGF-I gene and IGF-I serum concentration analysis were performed. As a result, the IGF-I cDNA sequence is 911 bp, which contains an open reading frame (ORF) of 564 bp encoding a protein of 187 amino acids. The sex-specific tissue expression was analyzed by using 14 tissues from females, normal males and extra-large male adults. The IGF-I mRNA was predominantly expressed in liver, and the IGF-I expression levels in females and extra-large males were 1.9 and 10.2 times as much as those in normal males, respectively. Sex differences in IGF-I mRNA expressions at early life stages were also examined by using a full-sib family of C. semilaevis, and the IGF-I mRNA was detected at all of the 27 sampling points from 10 to 410 days old. An increase in IGF-I mRNA was detected after 190 day old fish. The significantly higher levels of IGF-I mRNA in females were observed after 190 days old in comparison with males (P < 0.01). The IGF-I concentrations in serum of mature individuals were detected by ELISA. The IGF-I level in the serum of females was approximately two times as much as that of males. Consequently, IGF-I may play an important role in the endocrine regulation of the sexually dimorphic growth of C. semilaevis.  相似文献   

7.
We recently discovered a new role for insulin-like growth factor-I (IGF-I) as a specific and direct stimulator of prolactin (PRL) release in addition to its recognized function as an inhibitor of growth hormone (GH) release and synthesis. Little is known of the mechanisms that transduce the actions of IGF-I on PRL and GH release in vertebrates. The present study was undertaken to determine the cellular pathways that mediate the disparate actions of IGF-I on PRL and GH release in hybrid striped bass (Morone saxatilis X M. chrysops). When regulating cellular function, IGF-I may activate two primary pathways, phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK). The specific MAPK inhibitor, PD98059, blocked IGF-I-evoked PRL release as well as GH release inhibition over an 18-20-h incubation. LY294002, a specific PI 3-K inhibitor, overcame IGF-I's inhibition of GH release but was ineffective in blocking PRL release stimulated by IGF-I. These studies suggest IGF-I disparately alters PRL and GH by activating distinct as well as overlapping signaling pathways central for mediating actions of growth factors on secretory activity as well as cell proliferation. These results further support a role for IGF-I as a physiological regulator of PRL and GH.  相似文献   

8.
9.
10.
11.
Insulin-like growth factor I (IGF-I) activity has been reported to be produced by several human cancers. Identification of RNAs transcribed from the IGF-I gene has been complicated by the detection of multiple hybridizing bands on Northern analysis. To determine if any of these RNAs are transcribed from the IGF-I gene, we have used a sensitive and specific ribonuclease (RNAse) protection assay for IGF-I. We have also studied the breast cancer tissue expression of IGF-I using in situ hybridization histochemistry. We have found no IGF-I mRNA in breast (zero of 11) or colon cancer (zero of 9) cell lines; both of these tumors have been previously reported to express IGF-I mRNA. However, three of three neuroepithelioma and one of two Ewing's sarcoma cell lines express IGF-I mRNA; therefore, in these tumors IGF-I may be an autocrine growth factor. In contrast to breast cancer cell lines, RNA extracted from breast tissues has easily detectable IGF-I mRNA. In situ hybridizations show that IGF-I mRNA is expressed in the stromal cells, and not by normal or malignant epithelial cells. These findings suggest that although IGF-I is not produced by breast epithelial cells it may function as either a paracrine stimulator of epithelial cells or an autocrine stimulator of stromal cells.  相似文献   

12.
Low birth weight has been associated with an increased incidence of ischaemic heart disease (IHD) and type 2 diabetes. Endocrine regulation of fetal growth by growth hormone (GH) and insulin-like growth factor (IGF)-I is complex. Placental GH is detectable in maternal serum from the 8th to the 12th gestational week, and rises gradually during pregnancy where it replaces pituitary GH in the maternal circulation. The rise in placental GH may explain the pregnancy-induced rise in maternal serum IGF-I levels. In the fetal compartment, IGF-I levels increase significantly in normally growing fetuses from 18 to 40 weeks of gestation, but IGF-I levels are four to five times lower than those in the maternal circulation. Thus IGF-I levels in fetal as well as in maternal circulation are thought to regulate fetal growth. Circulating levels of IGF-I are thought to be genetically controlled and several IGF-I gene polymorphisms have been described. IGF-I gene polymorphisms are associated with birth weight in some studies but not in all. Likewise, IGF-I gene polymorphisms are associated with serum IGF-I in healthy adults in some studies, although some controversy exists. Serum IGF-I decreases with increasing age in healthy adults, and this decline could hypothetically be responsible for the increased risk of IHD with ageing. A recent nested case-control study found that adults without IHD, but with low circulating IGF-I levels and high IGF binding protein-3 levels, had a significantly increased risk of developing IHD during a 15-year follow-up period. In summary, the GH/IGF-I axis is involved in the regulation of fetal growth. Furthermore, it has been suggested that low IGF-I may increase the risk of IHD in otherwise healthy subjects. Hypothetically, intrauterine programming of the GH/IGF axis may influence postnatal growth, insulin resistance and consequently the risk of cardiovascular disease. Thus IGF-I may serve as a link between fetal growth and adult-onset disease.  相似文献   

13.
Characteristic property of the mammalian IGF-II molecule is the capability for the high-affinity binding to the IGF-2-receptor. The history of the appearance of the IGF-2 receptor in vertebrate phylogenesis is rather confused. IGF-2-receptor isoforms that are able to bind IGF-II with high affinity are revealed in tissues of mammals and fish, but not in amphibians and birds. The appearance of IGF-II itself and of structural modifications of its molecule in the course of phylogenesis remains unclear. The author proposed principle of bipolar structure of the A-chain domain participating in binding the IGF-2-receptor. This principle has made it possible to analyze changes of the amino acid composition of this domain in molecules of IGF-II and related peptides at various stages of vertebrate phylogenesis. Composition of the studied domain has allowed considering the cyclostome IGF as a precursor of fish IGF-II and IGF-I; in vertebrates, the domain composition is more variable in IGF-II than in IGF-I. Based on the performed analysis, it is suggested that the species-specific character of interaction of IGF-II with the IGF-2-receptor in the lower vertebrates and birds is one of obstacles of detecting the IGF-2 receptor in their tissues; IGF-I is also suggested to be a possible ligand of the IGF-2-receptor in the lower vertebrates.  相似文献   

14.
Various growth factors and cytokines have been implicated in different forms of kidney enlargement. Vascular endothelial growth factor (VEGF) is essential for normal renal development and plays a role in diabetic glomerular enlargement. To explore a possible role for VEGF in compensatory renal changes after uninephrectomy, we examined the effect of a neutralizing VEGF-antibody (VEGF-Ab) on glomerular volume and kidney weight in mice treated for 7 days. Serum and kidney insulin-like growth factor I (IGF-I) levels were measured, since IGF-I has been implicated in the pathogenesis of compensatory renal growth, and VEGF has been suggested to be a downstream mediator of IGF-I. Placebo-treated uninephrectomized mice displayed an early transient increase in kidney IGF-I concentration and an increase in glomerular volume and kidney weight. In VEGF-Ab-treated uninephrectomized animals, increased glomerular volume was abolished, whereas renal hypertrophy was partially blocked. Furthermore, the renal effects of VEGF-Ab administration were seen without affecting the renal IGF-I levels. In conclusion, these results demonstrate that compensatory glomerular growth after uninephrectomy is VEGF dependent.  相似文献   

15.
16.
The bone marrow, the primary site of hematopoiesis, is a self-renewing system consisting of a unique micro-environment that promotes the differentiation and proliferation of the various hematopoietic cell lines. While many critical factors necessary for red cell production have been identified, the regulation of erythropoiesis has not been completely elucidated. In addition to multi-lineage growth factors (e.g. interleukin 3 or 4) and lineage-specific hematopoietic growth factors (e.g. erythropoietin), several lines of evidence suggest a key role for insulin-like growth factor I (IGF-I). First, growth hormone stimulates erythropoiesis and IGF-I is known to mediate many of growth hormone's actions (somatomedin hypothesis). Second, factors in bovine serum and in serum from an anephric human with erythropoietic activity distinct from erythropoietin have been identified as IGFs. Third, IGF receptors are found on both erythrocyte precursors as well as mature erythrocytes. Fourth, in vitro IGF-I stimulates erythropoiesis in bone marrow cultures. Fifth, IGF-I administration to neonatal or hypophysectomized animals results in increased erythropoiesis in vivo. Recent studies indicate that IGF-I at physiologic concentrations stimulates erythropoiesis and that growth hormone's action is indirect, occurring via IGF-I. The physiologic source of IGF-I for the bone marrow may be delivery from the serum (an endocrine mechanism) or synthesis within the bone marrow by stromal or other cells (a paracrine mechanism). Our recent studies have shown that mouse bone marrow stromal cells secrete both IGF-I and IGF binding proteins (IGFBPs). The role of IGFBPs in erythropoiesis is not known, but they might modulate the local concentration of IGF-I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Dynamic interactions between cells and the extracellular matrix are essential in the regulation of a number of cellular processes including migration, adhesion, proliferation and differentiation. A variety of factors have been identified which modulate these interactions including transforming growth factor-beta, platelet-derived growth factor and others. Insulin-like growth factors have been shown to regulate collagen production by heart fibroblasts; however, the effects of this growth factor on the interactions of heart fibroblasts with the extracellular matrix have not been examined. The present studies were carried out to determine the effects of IGF-I on the ability of fibroblasts to interact with the extracellular matrix and to begin to determine the mechanisms of this response. These experiments illustrate that IGF-I treatment results in increased migration, collagen reorganization and gel contraction by heart fibroblasts. IGF-I has been shown to activate both the mitogen-activated protein kinase and phophatidylinositol-3 kinase pathways in isolated cells. Experiments with pharmacological antagonists of these pathways indicate that the mitogen-activated protein kinase pathway is essential for IGF-I stimulated collagen gel contraction by fibroblasts. These studies illustrate that IGF-I modulates the ability of fibroblasts to interact with the collagen matrix and that activation of multiple signaling pathways by IGF-I may produce distinct downstream responses in these cells.  相似文献   

18.
Dynamic interactions between cells and the extracellular matrix are essential in the regulation of a number of cellular processes including migration, adhesion, proliferation and differentiation. A variety of factors have been identified which modulate these interactions including transforming growth factor+, platelet-derived growth factor and others. Insulin-like growth factors have been shown to regulate collagen production by heart fibroblasts; however, the effects of this growth factor on the interactions of heart fibroblasts with the extracellular matrix have not been examined. The present studies were carried out to determine the effects of IGF-I on the ability of fibroblasts to interact with the extracellular matrix and to begin to determine the mechanisms of this response. These experiments illustrate that IGF-I treatment results in increased migration, collagen reorganization and gel contraction by heart fibroblasts. IGF-I has been shown to activate both the mitogen-activated protein kinase and phophatidylinositol-3 kinase pathways in isolated cells. Experiments with pharmacological antagonists of these pathways indicate that the mitogen-activated protein kinase pathway is essential for IGF-I stimulated collagen gel contraction by fibroblasts. These studies illustrate that IGF-I modulates the ability of fibroblasts to interact with the collagen matrix and that activation of multiple signaling pathways by IGF-I may produce distinct downstream responses in these cells.  相似文献   

19.
The current guidelines state that, within the appropriate clinical context, the diagnosis of adult growth hormone (GH) deficiency must be made biochemically using provocative tests. Measurement of insulin-like growth factor I (IGF-I) and binding protein 3 (IGFBP-3) levels cannot always distinguish between healthy and GH-deficient individuals. In particular, IGFBP-3 as a marker of GH status is clearly less sensitive than IGF-I and there is general agreement that its measurement does not provide useful diagnostic information. However, the diagnostic value of measuring IGF-I levels has been revisited recently. It has been confirmed that normal IGF-I levels do not rule out severe GH deficiency (GHD) in adults, in whom the diagnosis has therefore to be based on the demonstration of severe impairment of the peak GH response to provocative tests. It has also been emphasized that very low IGF-I levels in patients with high suspicion of GHD could be considered to be definite evidence for severe GHD. This assumption particularly applies to patients with childhood-onset, severe GHD or with multiple hypopituitary deficiencies acquired in adulthood. In addition, the use of IGF-I levels to monitor the efficacy and adequacy of recombinant human GH replacement remains widely accepted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号