首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

2.
The condensation of chromatin and histone H1-depleted chromatin by spermine   总被引:2,自引:0,他引:2  
At low ionic strength, spermine induces aggregation of native and H1-depleted chromatin at spermine/phosphate (Sp/P) ratios of 0.15 and 0.3, respectively. Physico-chemical methods (electric dichroism, circular dichroism and thermal denaturation) show that spermine, at Sp/P less than 0.15, does not appreciably alter the conformation of native chromatin and interacts unspecifically with all parts of chromatin DNA (linker as well as regions slightly or tightly bound to histones). In chromatin, the role of spermine could be more important in the stabilization of higher-order structure than in the condensation of the 30 nm solenoid. The addition of spermine to H1-depleted chromatin revealed two important features: (i) spermine can partially mimic the role of histone H1 in the condensation of chromatin; (ii) the core histone octamer does not appear to play any role in the aggregation process by spermine as DNA and H1-depleted chromatin aggregate at the same Sp/P ratio.  相似文献   

3.
4.
After removal of histone H1 about 40% of DNA in chromatin acquires the sensitivity of naked DNA to DNAse I. Digestion of H1-depleted chromatin with DNAse I leads to a qualitative change in the digestion pattern, generating DNA fragments of approx. 200 b.p. and multiples, similar to those obtained with micrococcal nuclease. Both effects are reversed upon reconstitution of purified H1 to H1-depleted chromatin.  相似文献   

5.
BACKGROUND: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.7 M. Although other nuclear proteins are also extracted at 0.7 M salt, the remaining nucleus represents a template that is relatively intact. METHODS: A cytochemical method was used to study the affinity of reconstituted linker histones for chromatin in situ in cultured human fibroblasts. We also investigated their ability to condense chromatin by using DNA-specific osmium ammine staining for electron microscopy. RESULTS: Permeabilized and H1-depleted fibroblast nuclei were suitable for the study of linker histone-chromatin interactions after reconstitution with purified linker histone subfractions. Our results showed that exogenous linker histones bind to chromatin with lower affinity than the native ones. We detected no significant differences between the main H1 and H1 degrees histone fractions with respect to their affinity for chromatin or in their ability to condense chromatin. CONCLUSIONS: Linker histone interactions with chromatin are controlled also by mechanisms independent of linker histone subtype composition.  相似文献   

6.
Electrostatic mechanism of chromatin folding   总被引:16,自引:0,他引:16  
  相似文献   

7.
Quantitative analysis of the circular dichroism of nucleohistones and protein-free DNA was carried out in order to determine the structure and the role of the linker region DNA in chromatin, in terms of the conformational change of chromatin as a function of the ionic strength. It is shown clearly that the circular dichroism of Hl-depleted chromatin isolated from calf thymus is determined only by the ratio of the core region to the linker region and demonstrated by the linear combination of the spectrum of protein-free DNA and that of the nucleosome core in 5 mm-Tris · HCl, 1 mm-EDTA (pH 7.8). The calculated spectrum for the linker region in the H1-depleted chromatin was in good agreement with that of protein-free DNA. From the difference spectra between nucleohistones and protein-free DNA, it is suggested that the chromatin has an additional winding of DNA other than 146 base-pairs of DNA around the histone core. By decreasing the ionic strength to values lower than 5 mm-Tris · HCl, 1 mm-EDTA, the ellipticity of H1-depleted chromatin increased greatly between 250 nm and 300 nm while the increase was small in the case of chromatin and the nucleosome core. Nucleosomes with linker region DNA but without histone H1 also show great increase in ellipticity in this range of wavelengths as the ionic strength is decreased. Therefore, the linker region in H1-depleted chromatin plays an important role in the conformational changes brought about by changes in the ionic strength, and the conformational changes caused in the DNA of chromatin by decreasing the ionic strength are suppressed by the presence of histone H1.  相似文献   

8.
9.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

10.
Micrococcal nuclease digestion and light scattering are used to compare native chromatins with various histone H1[0] contents. The experimental data show that the higher the H1[0] content, the greater the ability to form compact structures with increasing ionic strength, and the lower the DNA accessibility to micrococcal nuclease. On the contrary, reconstituted samples from H1-depleted chromatin and pure individual H1 fractions behave in such a way that samples reconstituted with pure H1 degree give rise to a looser structure, more accessible to nuclease than samples reconstituted with H1-1. This contradiction suggests that the effect of H1o on chromatin structure must originate from the interaction of this histone with other components in native chromatin among which other histone H1 subfractions are good candidates.  相似文献   

11.
12.
13.
14.
Modulation of chromatin structure by poly(ADP-ribosyl)ation   总被引:5,自引:0,他引:5  
Poly(ADP-ribose) polymerase is a nuclear enzyme that is highly conserved in eucaryotes. Its activity is totally dependent on the presence of DNA containing single or double stranded breaks. We have shown that this activation results in a decondensation of chromatin superstructure in vitro, which is caused mainly by hyper(ADP-ribosy)ation of histone H1. In core particles, the modification of histone H2B leads to a partial dissociation of DNA from core histones. The conformational change of native chromatin by poly(ADP-ribosyl)ation is reversible upon degradation of the histone H1-bound poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase. We propose that cuts produced in vivo on DNA during DNA repair activate poly(ADP-ribose) polymerase, which then synthesizes poly(ADP-ribose) on histone H1, in particular, and contributes to the opening of the 25-nm chromatin fiber, resulting in the increased accessibility of DNA to excision repair enzymes. This mechanism is fast and reversible.  相似文献   

15.
HMG-D is an abundant chromosomal protein associated with condensed chromatin during the first nuclear cleavage cycles of the developing Drosophila embryo. We previously suggested that HMG-D might substitute for the linker histone H1 in the preblastoderm embryo and that this substitution might result in the characteristic less compacted chromatin. We have now studied the association of HMG-D with chromatin using a cell-free system for chromatin reconstitution derived from Drosophila embryos. Association of HMG-D with chromatin, like that of histone H1, increases the nucleosome spacing indicative of binding to the linker DNA between nucleosomes. HMG-D interacts with DNA during the early phases of nucleosome assembly but is gradually displaced as chromatin matures. By contrast, purified chromatin can be loaded with stoichiometric amounts of HMG-D, and this can be displaced upon addition of histone H1. A direct physical interaction between HMG-D and histone H1 was observed in a Far Western analysis. The competitive nature of this interaction is reminiscent of the apparent replacement of HMG-D by H1 during mid-blastula transition. These data are consistent with the hypothesis that HMG-D functions as a specialized linker protein prior to appearance of histone H1.  相似文献   

16.
17.
Protein-dependent conformational behavior of DNA in chromatin   总被引:1,自引:0,他引:1  
M R Riehm  R E Harrington 《Biochemistry》1987,26(10):2878-2886
  相似文献   

18.
Nucleosome-remodelling factors containing the ATPase ISWI, such as ACF, render DNA in chromatin accessible by promoting the sliding of histone octamers. Although the ATP-dependent repositioning of mononucleosomes is readily observable in vitro, it is unclear to which extent nucleosomes can be moved in physiological chromatin, where neighbouring nucleosomes, linker histones and the folding of the nucleosomal array restrict mobility. We assembled arrays consisting of 12 nucleosomes or 12 chromatosomes (nucleosomes plus linker histone) from defined components and subjected them to remodelling by ACF or the ATPase CHD1. Both factors increased the access to DNA in nucleosome arrays. ACF, but not CHD1, catalysed profound movements of nucleosomes throughout the array, suggesting different remodelling mechanisms. Linker histones inhibited remodelling by CHD1. Surprisingly, ACF catalysed significant repositioning of entire chromatosomes in chromatin containing saturating levels of linker histone H1. H1 inhibited the ATP-dependent generation of DNA accessibility by only about 50%. This first demonstration of catalysed chromatosome movements suggests that the bulk of interphase euchromatin may be rendered dynamic by dedicated nucleosome-remodelling factors.  相似文献   

19.
20.
The belief that histone H1 interacts primarily with DNA in chromatin and much less with the protein component has led to numerous studies of artificial H1-DNA complexes. This review summarizes and discusses the data on different aspects of the interaction between the linker histone and naked DNA, including cooperativity of binding, preference for supercoiled DNA, selectivity with respect to base composition and nucleotide sequence, and effect of H1 binding on the conformation of the underlying DNA. The nature of the interaction, the structure of the complexes, and the role histone H1 exerts in chromatin are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号