首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Iron uptake in colicin B-resistant mutants of Escherichia coli K-12.   总被引:21,自引:8,他引:13       下载免费PDF全文
Four classes of colicin B-resistant mutants of Escherichia coli K-12 were examined for defects in iron uptake. All four mutant classes (cbt, exbC, exbB, and tonB) were defective in the uptake of ferri-ennterochelin. The tonB mutant was also defective in citrate-, ferrichrome-, and rhodoturulic acid-mediated iron uptake. The defects in iron transport were reflected in increased sensitivity to iron chelators and to chromium and aluminium salts, and in hypersecretion of enterochelin. One of the mutants (cbt) was apparently defective in outer membrane ferri-enterochelin receptor activity. aroE derivatives (unable to synthesize enterochelin) of the four mutant classes and the parent strain produced increased amounts of two outer membranes polypeptides when grown under iron stress. These polypeptides are implicated in ferri-enterochelin receptor activity.  相似文献   

2.
Escherichia coli genes specifically required for transport of iron by the siderophore enterobactin are designated fep. The studies reported here were initiated to identify and localize the fepB product. The plasmid pCP111, which consisted of an 11-kilobase E. coli DNA fragment containing fepB ligated to pACYC184, was constructed. The fepB gene was subcloned; in the process, complementation tests and Tn5 mutagenesis results provided evidence for the existence of a new fep gene, fepC. The order of the transport genes in the ent gene cluster is as follows: fepA fes entF fepC fepB entE. Minicell, maxicell, and in vitro DNA-directed protein synthesizing systems were used to identify the fepB and fepC products. The fepC polypeptide was 30,500 daltons in standard sodium dodecyl sulfate-polyacrylamide gels. The fepB gene was responsible for the appearance of three or four bands (their apparent molecular weights ranged from 31,500 to 36,500) in sodium dodecyl sulfate-polyacrylamide gels, depending on the gel system employed. The largest of these was tentatively designated proFepB, since it apparently had a leader sequence. Localization experiments showed that FepC was a membrane constituent and that mature FepB was present in the periplasm. An additional polypeptide (X) was also encoded by the bacterial DNA of pCP111, but its relationship to iron transport is unknown. The results indicated that ferrienterobactin uptake is mediated by a periplasmic transport system and that genes coding for outer membrane (fepA), periplasmic (fepB), and cytoplasmic membrane (fepC) components have now been identified.  相似文献   

3.
The conjugative plasmid pUR400 determines tetracycline resistance and enables cells of Escherichia coli K-12 to utilize sucrose as the sole carbon source. Three types of mutants affecting sucrose metabolism were derived from pUR400. One type lacked a specific transport system (srcA); another lacked sucrose-6-phosphate hydrolase (scrB); and the third, a regulatory mutant, expressed both of these functions constitutively (scrR). In a strain harboring pUR400, both transport and sucrose-6-phosphate hydrolase were inducible by fructose, sucrose, and raffinose; if a scrB mutant was used, fructose was the only inducer. These data suggested that fructose or a derivative acted as an endogenous inducer. Sucrose transport and sucrose-6-phosphate hydrolase were subject to catabolite repression; these two functions were not expressed in an E. coli host (of pUR400) deficient in the adenosine 3-,5'-phosphate receptor protein. Sucrose uptake (apparent Km = 10 microM) was dependent on the scrA gene product and on the phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) of the host. The product of sucrose uptake (via group translocation) was identified as sucrose-6-phosphate, phosphorylated at C6 of the glucose moiety. Intracellular sucrose-6-phosphate hydrolase catalyzed the hydrolysis of sucrose-6-phosphate (Km = 0.17 mM), sucrose (Km = 60 mM), and raffinose (Km = 150 mM). The active enzyme was shown to be a dimer of Mr 110,000.  相似文献   

4.
Iron uptake and iron limited growth of Escherichia coli K-12   总被引:4,自引:0,他引:4  
Cells of Escherichia coli K-12 could grow aerobically at an iron concentration as low as 0.05 M without any of the known iron ionophores present. The growth rate increased between 0.05 and 2 M iron. Supplementation with the iron ligands ferrichrome and citrate resulted in optimal growth already at 0.05 M iron. Under certain conditions iron uptake preceded growth of cells by more than an hour. During logarithmic growth the rate of iron uptake matched the growth rate. The radioactive tracer method revealed a cellular iron content of 4 nmol/mg dry weight.After consumption of the iron in the medium cells continued to grow with high rate for 1–2 generations. The iron uptake activity was increased during iron starvation.  相似文献   

5.
6.
Hemin-deficient mutants of Escherichia coli K-12.   总被引:32,自引:16,他引:16  
  相似文献   

7.
8.
9.
L-arabinose transport systems in Escherichia coli K-12.   总被引:10,自引:8,他引:2       下载免费PDF全文
Mutations in the arabinose transport operons of Escherichia coli K-12 were isolated with the Mu lac phage by screening for cells in which beta-galactosidase is induced in the presence of L-arabinose. Standard genetic techniques were then used to isolate numerous mutations in either of the two transport systems. Complementation tests revealed only one gene, araE, in the low-affinity arabinose uptake system. P1 transduction placed araE between lysA (60.9 min) and thyA (60.5 min) and closer to lysA. The operon of the high-affinity transport system was found to contain two genes: araF, which codes for the arabinose-binding protein, and a new gene, araG. The newly identified gene, araG, was shown by two-dimensional gel electrophoresis to encode a protein which is located in the membrane. Only defects in araG could abolish uptake by the high-affinity system under the conditions we used.  相似文献   

10.
Nonrandom minichromosome replication in Escherichia coli K-12.   总被引:6,自引:5,他引:1       下载免费PDF全文
The intervals between rounds of chromosome and minichromosome replication were measured by density shift experiments and found to be similar. Thus the minichromosome, a lambda asnA oriC bacteriophage, mostly replicates once each division cycle rather than randomly, despite its high copy number. Slight differences between the chromosome and the oriC plasmid are explained.  相似文献   

11.
Uroporphyrin-accumulating mutant of Escherichia coli K-12.   总被引:4,自引:6,他引:4       下载免费PDF全文
An uroporphyrin III-accumulating mutant of Escherichia coli K-12 was isolated by neomycin. The mutant, designated SASQ85, was catalase deficient and formed dwarf colonies on usual media. Comparative extraction by cyclohexanone and ethyl acetate showed the superiority of the former for the extraction of the uroporphyrin accumulated by the mutant. Cell-free extracts of SASQ85 were able to convert 5-aminolevulinic acid and porphobilinogen to uroporphyrinogen, but not to copro- or protoporphyrinogen. Under the same conditions cell-free extracts of the parent strain converted 5-aminolevulinic to uroporphyringen, coproporphyrinogen, and protoporphyrinogen. The conversion of porphobilinogen to uroporphyrinogen by cell-free extracts of the mutant was inhibited 98 and 95%, respectively, by p-chloromercuribenzoate and p-chloromercuriphenyl-sulfonate, indicating the presence of uroporphyrinogen synthetase activity in the extracts. Spontaneous transformation of porphobilinogen to uroporphyrin was not detectable under the experimental conditions used [4 h at 37 C in tris(hydroxymethyl)aminomethane-potassium phosphate buffer, pH 8.2]. The results indicate a deficient uroporphyrinogen decarboxylase activity of SASQ85 which is thus the first uroporphyrinogen decarboxylase-deficient mutant isolated in E. coli K-12. Mapping of the corresponding locus by P1-mediated transduction revealed the frequent joint transduction of hemE and thiA markers (frequency of co-transduction, 41 to 44%). The results of the genetic analysis suggest the gene order rif, hemE, thiA, metA; however, they do not totally exclude the gene order rif, thiA, hemE, metA.  相似文献   

12.
Gene-protein index of Escherichia coli K-12.   总被引:47,自引:3,他引:44       下载免费PDF全文
  相似文献   

13.
Kinetics of methylation in Escherichia coli K-12.   总被引:15,自引:5,他引:10       下载免费PDF全文
Newly synthesized DNA is undermethylated in E. coli K-12. The amount of N6-methyl deoxyadenylic acid in labeled DNA varied from 0.3 mol% of total adenine for a 2-min pulse to 1.7 mol% for DNA that was labeled for more than two generations.  相似文献   

14.
The phoBR operon in Escherichia coli K-12.   总被引:3,自引:13,他引:3       下载免费PDF全文
  相似文献   

15.
Both the autonomous and chromosomally integrated F plasmids were found to replicate in a nonrandom fashion after a density transfer from heavy medium ([13C]glucose, 15NH4) to light medium ([12C]glucose, 14NH4). The data are consistent with the hypothesis that both the chromosome and the F plasmid are replicated in a cell cycle-specific manner. Thus, these data support the proposal (J. D. Keasling, B. O. Palsson, and S. Cooper, J. Bacteriol. 173:2673-2680, 1991) that plasmids replicate in a cell cycle-specific manner.  相似文献   

16.
Genome-wide expression profiling in Escherichia coli K-12.   总被引:6,自引:0,他引:6       下载免费PDF全文
We have established high resolution methods for global monitoring of gene expression in Escherichia coli. Hybridization of radiolabeled cDNA to spot blots on nylon membranes was compared to hybridization of fluorescently-labeled cDNA to glass microarrays for efficiency and reproducibility. A complete set of PCR primers was created for all 4290 annotated open reading frames (ORFs) from the complete genome sequence of E.coli K-12 (MG1655). Glass- and nylon-based arrays of PCR products were prepared and used to assess global changes in gene expression. Full-length coding sequences for array printing were generated by two-step PCR amplification. In this study we measured changes in RNA levels after exposure to heat shock and following treatment with isopropyl-beta-D-thiogalactopyranoside (IPTG). Both radioactive and fluorescence-based methods showed comparable results. Treatment with IPTG resulted in high level induction of the lacZYA and melAB operons. Following heat shock treatment 119 genes were shown to have significantly altered expression levels, including 35 previously uncharacterized ORFs and most genes of the heat shock stimulon. Analysis of spot intensities from hybridization to replicate arrays identified sets of genes with signals consistently above background suggesting that at least 25% of genes were expressed at detectable levels during growth in rich media.  相似文献   

17.
Iron transport in Escherichia coli K-12   总被引:14,自引:0,他引:14  
The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.List of Abbreviations DHB 2,3-dihydroxybenzoate - DBS 2,3-dihydroxybenzoylserine - NTA nitrilotriacetate - DNP 2,4-dinitrophenol  相似文献   

18.
19.
20.
Escherichia coli mutants defective in the assimilation of iron from ferrienterochelin were isolated and characterized. One mutant was able to bind ferrienterochelin to its outer membrane but could not transport it into the cell. Complementation tests with lambda hybrid phage were employed to distinguish the defective gene, which we term fepB, from fepA, the structural gene for the outer membrane ferrienterochelin receptor protein. These same physiological and genetic tests were employed to tentatively classify several previously described fep mutants as carrying either fepA or fepB. The data demonstrate the existence of fepB and provide an explanation for previous difficulties in identifying fepB mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号