首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
External nutrient supplementation and detoxification of hydrolysate significantly increase the production cost of cellulosic ethanol. In this study, we investigated the feasibility of fermenting cellulosic hydrolysates without washing, detoxification or external nutrient supplementation using ethanologens Escherichia coli KO11 and the adapted strain ML01 at low initial cell density (16 mg dry weight/L). The cellulosic hydrolysates were derived from enzymatically digested ammonia fiber expansion (AFEX)-treated corn stover and dry distiller's grain and solubles (DDGS) at high solids loading (18% by weight). The adaptation was achieved through selective evolution of KO11 on hydrolysate from AFEX-treated corn stover. All cellulosic hydrolysates tested (36-52 g/L glucose) were fermentable. Regardless of strains, metabolic ethanol yields were near the theoretical limit (0.51 g ethanol/g consumed sugar). Volumetric ethanol productivity of 1.2 g/h/L was achieved in fermentation on DDGS hydrolysate and DDGS improved the fermentability of hydrolysate from corn stover. However, enzymatic hydrolysis and xylose utilization during fermentation were the bottlenecks for ethanol production from corn stover at these experimental conditions. In conclusion, fermentation under the baseline conditions was feasible. Utilization of nutrient-rich feedstocks such as DDGS in fermentation can replace expensive media supplementation.  相似文献   

2.
Aims: A Lactobacillus buchneri strain NRRL B‐30929 can convert xylose and glucose into ethanol and chemicals. The aims of the study were to survey three strains (NRRL B‐30929, NRRL 1837 and DSM 5987) for fermenting 17 single substrates and to exam NRRL B‐30929 for fermenting mixed substrates from biomass hydrolysates. Methods and Results: Mixed acid fermentation was observed for all three L. buchneri strains using various carbohydrates; the only exception was uridine which yielded lactate, acetate and uracil. Only B‐30929 is capable of utilizing cellobiose, a desired trait in a potential biocatalyst for biomass conversion. Flask fermentation indicated that the B‐30929 strain can use all the sugars released from pretreated hydrolysates, and producing 1·98–2·35 g l?1 ethanol from corn stover hydrolysates and 2·92–3·01 g l?1 ethanol from wheat straw hydrolysates when supplemented with either 0·25× MRS plus 1% corn steep liquor or 0·5× MRS. Conclusions: The L. buchneri NRRL B‐30929 can utilize mixed sugars in corn stover and wheat straw hydrolysates for ethanol and other chemical production. Significance and Impact of the Study: These results are valuable for future research in engineering L. buchneri NRRL B‐30929 for fermentative production of ethanol and chemicals from biomass.  相似文献   

3.
4.
AIMS: Evaluation of fermentative usage of raw starchy materials for exopolysaccharide (EPS) production by Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82. METHODS AND RESULTS: Non-hydrolysed corn starch, soft wheat flour, potato flour, cassava flour, sweet and industrial potato flours, and corn starch hydrolysed to different dextrose equivalent (DE) were tested in shaken culture for EPS production. Both fungal strains produced EPS on all tested materials but the production was maximum on hydrolysed corn starch (30.5 and 19.8 g l(-1) by B. rhodina and S. glucanicum on corn starch at 100 and 62 DE, respectively). CONCLUSIONS: Raw starchy materials as such and, in particular, partially or totally hydrolysed corn starch could be used profitably for EPS production by S. glucanicum and B. rhodina. SIGNIFICANCE AND IMPACT OF THE STUDY: The excellent EPS production, productivity and yield of B. rhodina DABAC-P82 when grown on 60 g l(-1) of totally hydrolysed corn starch.  相似文献   

5.
Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO2 eq (equivalent) GHG emission, and the process also offers additional environmental benefits.  相似文献   

6.
Sugarcane bagasse hemicellulose hydrolysates, pretreated by either over-liming or electrodialysis and, supplemented with nutrient materials, were fermented to ethanol using Pachysolen tannophilus DW06. Compared with detoxification by over-liming, detoxification by electrodialysis decreased the loss of sugar and increased the acetic acid removal, leading to better fermentability. A batch culture with electrodialytically pretreated hydrolysate as substrate was developed giving 21 g ethanol l−1 with a yield of 0.35 g g−1 sugar and productivity of 0.59 g l−1 h−1.  相似文献   

7.
本文以玉米浆和木薯为原料,用机械搅拌式发酵罐制备细菌纤维素(BC),对发酵过程的纤维素产量、还原糖消耗、溶氧变化和茵浓变化进行了监测,并以葡萄糖一蛋白胨-酵母粉培养基为对照进行了比较。实验得出玉米浆作氮源时不溶BC的产量为9.2g/L,而氮源成本只是对照组的15%;木薯水解液作碳源时的不溶BC产量达到11.7g/L,比对照组(10.8g/L)高8%;而用玉米浆搭配木薯水解液发酵生产BC,产量也达到10.1g/L,验证了这两种天然原料的廉价高效性,用于工业生产细菌纤维素具有良好的前景。  相似文献   

8.
Chemical hydrolysis of lignocellulosic biomass (LB) produces a number of inhibitors in addition to sugars. These inhibitors include lignin-derived phenolics, carbohydrate-derived furans, and weak acids that have shown a marked effect on the productivities of various metabolites and the growth of biocatalysts in the fermentative reaction. In the past, a number of physicochemical and biological approaches have been proposed to overcome these fermentation inhibitors, including modified fermentative strategies. Additionally, the timely intervention of genetic engineering has provided an impetus to develop suitable technologies for the detoxification of lignocellulosics in biorefineries. However, the improvements in detoxification strategies for lignocellulose hydrolysates have resulted in significant loss of sugars after detoxification. Hydrolysis of myco-LB (LB after fungal pretreatment) has been recognized as a promising approach to avoid fermentation inhibitors and improve total sugar recovery. Biotechnological inventions have also made it possible to widen the range of suitable biocatalysts for biorefineries by microbial-routed induction of enzymatic expression for the elimination of inhibitors, eventually improving ethanol production from acid hydrolysates. This article aims to highlight the strategies that have been adopted to detoxify lignocellulosic hydrolysates and their effects on the chemical composition of the hydrolysates to improve the fermentability of lignocellulosics. In addition, genetic manipulation could widen the availability and variety of substrates and modify the metabolic routes to produce bioethanol or other value-added compounds in an efficient manner.  相似文献   

9.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

10.
H2 production and xylose utilization were investigated using the fermentative culture Clostridium beijerinckii NCIMB 8052. Adding anthrahydroquinone-2,6-disulfonate (AH2QDS) increased the extent of xylose utilization by 56% and hydrogen molar yield by 24–37%. Enhanced hydrogen molar yield correlated with increased xylose utilization and increases in the acetate/butyrate product ratio. An electron balance indicated that AH2QDS shifted the electrons from the butyric acid pathway (NADH-dependent pathway) to the acetic acid pathway (non-NADH-dependent pathway), putatively creating a surplus of reducing equivalents that were then available for hydrogen production. These data demonstrate that hydrogen yield and xylose utilization can be manipulated by amending redox active molecules into growing cultures. This will impact biohydrogen/biofuel production by allowing physiological manipulations of growing cells for increased (or decreased) output of selected metabolites using amendments that are not consumed during the reactions. Although the current yield increases are small, they suggest a target for cellular alterations. In addition, increased xylose utilization will be critical to the fermentation of pretreated lignocellulosic feedstocks, which may have higher xylose content.  相似文献   

11.
The cost efficiency of the biorefining process can be improved by extracting high-molecular-mass hemicelluloses from lignocellulosic biomass prior to ethanol production. These hemicelluloses can be used in several high-value-added applications and are likely to be important raw materials in the future. In this study, steam pretreatment in an alkaline environment was used to pretreat the lignocellulosic biomass for ethanol production and, at the same time, extract arabinoxylan with a high-molecular-mass. It was shown that 30% of the arabinoxylan in barley straw could be extracted with high-molecular-mass, without dissolving the cellulose. The cellulose in the solid fraction could then be hydrolysed with cellulase enzymes giving a cellulose conversion of about 80–90% after 72 h. For wheat straw, more than 40% of the arabinoxylan could be extracted with high-molecular-mass and the cellulose conversion of the solid residue after 72 h was about 70–85%. The high cellulose conversion of the pretreated wheat and barley straw shows that they can be used for ethanol production without further treatment. It is therefore concluded that it is possible to extract high-molecular-mass arabinoxylan simultaneously with the pretreatment of biomass for ethanol production in a single steam pretreatment step.  相似文献   

12.
Sprouted barley grains, the waste product of malt extract production, were incriminated as the cause of a lethal (96% mortality) neurotoxic syndrome in sheep fed the grains. Clinical manifestations, comprising tremors, lameness, abnormal gait, paralysis and death indicated a tremorgenic mycotoxicosis. Whilst 50% of the flock died within 17 days, mortality continued over more than 5 months. Pathological findings were limited to neuronal degeneration and necrosis in the midbrain. Germinating grains were shown to be contaminated with growth of Aspergillus clavatus.  相似文献   

13.
Summary Hydrolysates obtained by enzymatic saccharification of wheat straw or cornstover pretreated by steam explosion in classical or acidic conditions, were found non fermentable into acetone-butanol (ABE). A simple treatment involving heating the hydrolysates in the presence of calcium or magnesium compounds such as Ca(OH)2 or MgCO3 at neutral pH values restored normal fermentability to these hydrolysates. The detoxification treatment could be included in the standard neutralization and sterilization procedures performed before fermentation.  相似文献   

14.
This work describes a novel approach to detoxify lignocellulosic hydrolysates and facilitate the analysis of inhibitory compounds, namely supercritical fluid extraction (SFE). The efficiency of the fermentation of lignocellulosic dilute-acid hydrolysates depends upon the composition of the hydrolysate and the organism used. Furthermore, it has been shown that inhibitors in the hydrolysate reduce the fermentation yield. This knowledge has given rise to the need to identify and remove the inhibiting compounds. Sample clean-up or work-up steps, to provide a clean and concentrated sample for the analytical system, facilitate the characterization of inhibitors, or indeed any compound in the hydrolysates. Removal of inhibitors was performed with countercurrent flow supercritical fluid extraction of liquid hydrolysates. Three different groups of inhibitors (furan derivatives, phenolic compounds, and aliphatic acids) and sugars were subsequently analyzed in the hydrolysate, extracted hydrolysate, and extract. The effect of the SFE treatment was examined with respect to fermentability with Saccharomyces cerevisiae. Not only did the extraction provide a clean and concentrated sample (extract) for analysis, but also a hydrolysate with increased fermentability as well as lower concentrations of inhibitors such as phenolics and furan derivatives.  相似文献   

15.
Seo JA  Kim JC  Lee DH  Lee YW 《Mycopathologia》1996,134(1):31-37
A total of 214 Fusarium graminearum isolates were obtained from corn and barley which were collected from Kangwon province and the southern part of Korea, respectively, and were tested for 8-ketotrichothecenes and zearalenone (ZEA) production on rice grains. The incidences of trichothecene production by 105 isolates of F. graminearum from corn were 59.0% for deoxynivalenol (DON), 37.1% for 15-acetyldeoxynivalenol(15-ADON), 13.3% for 3-acetyldeoxynivalenol (3-ADON), 7.6% for 3,15-diacetyldeoxynivalenol (3,15-DADON), 20.0% for nivalenol (NIV), 6.7% for 4-acetylnivalenol (4-ANIV), and 1.0% for 4,15-diacetylnivalenol (4,15-DANIV). DON chemotypes frequently produced 15-ADON as the major isomer rather than 3-ADON and 9 of the 61 DON chemotypes produced low levels of NIV. On the other hand, the incidences of trichothecene production of 109 isolates by F. graminearum from barley were 24.8% for DON, 72.5% for NIV, 62.4% for 4-ANIV, and 10.1% for 4,15-DANIV. Of these isolates, 78 were NIV chemotypes and only one isolate produced DON and 3-ADON as major toxins. In addition, 26 of the 78 NIV chemotypes produced low levels of DON. ZEA was frequently produced by the trichothecene-producing isolates and the incidences of ZEA were 51.4% and 31.2% for the isolates from corn and barley, respectively. There was a great regional difference in trichothecene production by F. graminearum isolates between corn- and barley-producing areas in Korea.  相似文献   

16.
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.  相似文献   

17.
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process. Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998  相似文献   

18.
Rice straw is a promising resource for bioethanol production. Because the glucose content of pretreatment liquid hydrolysates is highly correlated with ethanol yield, the selection of appropriate rice cultivars is essential. The glucose content in liquid hydrolysates of pretreated rice straws of 208 diverse cultivars was evaluated in natural field in 2013 and 2014 using a novel high-throughput system. The glucose content of the rice straw samples varied across cultivars and was affected by environmental factors such as temperature and solar radiation. Several high-quality cultivars exhibiting high glucose content in both years were identified. The results of this study can aid in development of novel rice cultivars suitable as both feedstocks for bioethanol production and cooking.  相似文献   

19.
Escherichia coli strain FBR3 that is an efficient biocatalyst for converting mixed sugar streams (eg, arabinose, glucose, and xylose) into ethanol. In this report, the strain was tested for conversion of corn fiber hydrolysates into ethanol. Corn fiber hydrolysates with total sugar concentrations of 7.5% (w/v) were prepared by reacting corn fiber with dilute sulfuric acid at 145°C. Initial fermentations of the hydrolysate by strain FBR3 had lag times of approximately 30 h judged by ethanol production. Further experiments indicated that the acetate present in the hydrolysate could not solely account for the long lag. The lag phase was greatly reduced by growing the pre-seed and seed cultures on corn fiber hydrolysate. Ethanol yields for the optimized fermentations were 90% of theoretical. Maximum ethanol concentrations were 2.80% w/v, and the fermentations were completed in approximately 50 h. The optimal pH for the fermentation was 6.5. Below this pH, sugar consumption was incomplete and above it, excess base addition was required throughout the fermentation. Two alternative neutralization methods (overliming and overliming with sulfite addition) have been reported for improving the fermentability of lignocellulosic hydrolysates. These methods further reduced the lag phase of the fermentation, albeit by a minor amount. Received 29 September 1998/ Accepted in revised form 20 February 1999  相似文献   

20.
To establish high-efficiency pretreatments of cornstalk (CS) for hydrogen fermentative production, various pretreatment strategies have been investigated and contrasted in this work. Five pretreatment methods, including acid-soaking pretreatment, base-soaking pretreatment, high-temperature-assisted acid pretreatment, high-temperature-assisted base pretreatment and ultrasonic-assisted acid pretreatment (UAP), were performed on CS. The results showed that UAP significantly promoted the hydrogen production by CS compared with other pretreatments. The optimum UAP process, pretreating substrate with ultrasonication in 2.0% sulfuric acid solution for 1.5 h at the liquid-solid ratio of 20:1, obtained the maximum specific hydrogen accumulation of 142.59 mL g(-1)-CS and an average hydrogen production rate of 17.03 mL g(-1)-CS h(-1). Furthermore, the scanning electron microscope analysis of CS samples supports the hydrogen production results as well. The present work demonstrates that UAP is an efficient and practical CS pretreatment for hydrogen production from agricultural waste straws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号