首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The kinetics of lactate dehydrogenase (both forward and back reaction) in cardiac and skeletal muscle of an Antarctic teleost have been compared with a temperate teleost of comparable morphology and ecology. 2. In both species the forward reaction (pyruvate to lactate) is maximally activated at 2.5-4 mM pyruvate and inhibited above this level. 3. The Michaelis constant (Km) for pyruvate is not significantly different between muscle types or between species when measured at their normal environmental temperature. 4. Km for pyruvate varies with temperature in a positive direction. 5. The back reaction (lactate to pyruvate) is maximally activated by 12-16 mM lactate but only in skeletal muscle of the antarctic species is there inhibition above this level. 6. The Km for lactate is significantly (P less than 0.05) lower in the Antarctic fish cardiac muscle. 7. While the two species are morphologically and ecologically similar, differences at the biochemical level are discussed with respect to environmental temperature range and conservation of enzymic characteristics.  相似文献   

2.

The kiore, once common throughout New Zealand, had disappeared from most of the country by the end of the 19th century, and is now found only on certain offshore islands and in areas of Fiordland where at least one of the three introduced European rodent species is absent. It is usually accepted that the kiore was displaced by ship rats (Rattus r. rattus) and Norway rats (R. norvegicus). However, recent investigations on Stewart Island have revealed kiore, ship rats, and Norway rats living in close association, but in the absence of mice (Mus musculus). In the area studied the kiore seemed to inhabit mainly grassland. Re‐examination of possible reasons for the decline of the kiore strongly suggests that competition from mice has been a major contributing factor. It seems that in New Zealand a niche no longer exists for kiore once mice, ship rats, and Norway rats have all become established.  相似文献   

3.
The brain of Antarctic fish of the perciform suborder Notothenioidea was analysed with lightand electronmicroscopical methods. The overall organization and ultrastructure of the optic tectum is very similar to that of fish from temperate climates. However, unusual structures were observed in neurons and glial cells, sometimes in high frequencies. The structures are ovoid or elongated, about 200-600 nm in diameter and surrounded by two layers of membranes in a uniform distance of about 30 nm. The enclosed inter-membrane space is similar to extracellular space, both in size and in cytochemical calcium precipitation, while the interior of the structures resembles cytoplasm. These structures are sometimes connected to neuronal processes, so that they seem to originate by a sort of budding process, but most of them are isolated as can be concluded from thick sections of up to 800 nm thickness, analysed with energy-filtering transmission electron microscopy (EFTEM). These unusual objects are present in high abundance in members of the white-blooded Antarctic fish family Channichthyidae. These so-called icefish lack haemoglobin and exhibit the highest degree of cold adaptation. The red-blooded notothenoid fish had smaller amounts of these structures and they were observed even in fish from temperate climates (trout, carp, cichlid fish). In fish from temperate climates the unusual substructures were more abundant during adaptation to cold water temperatures (winter) than to warm conditions (summer). Therefore, the findings may indicate a general phenomenon of cold adaptation with unusual interactions of neurons and glial cells, but the precise function is not yet understood.  相似文献   

4.
Oxygen consumption and ammonia excretion rates increased in an accelerated manner in larvae and juveniles of whitefish (Coregonus sp.) as a function of swimming speed. The three-dimensional patterns of fish metabolic rates (expressed as energy consumed or nitrogen excreted) versus body weight and swimming speed show that the total standard metabolic rate (i. e. at extrapolated zero swimming speed) increased during early life of whitefish, followed by the expected decrease. This phenomenon might be due to the profound changes in oxidative and glycolytic enzyme activities during fish “metamorphosis”. Standard metabolic rate of ammonia excretion, as a principal product of protein catabolism in fish, decreased by one order of magnitude in early coregonid ontogenesis. This means that protein utilization as an energy source decreases as far as standard metabolism is concerned, but increases with swimming speed. This trend is opposite that in adult fish, where protein utilization in the overall energy supply is diminished at increasing swimming speed. The cost of locomotion offish larvae and juveniles demonstrates that the energy expenditure increases logarithmically with decreasing fish size but at an accelerated rate as compared to adult fish. This contradicts earlier estimates of lower cost of swimming in fish larvae than cost of paddle-propulsion swimming in small invertebrates or cost of flying in insects.  相似文献   

5.
Synopsis Contraction time of an isolated white muscle from the temperate water Girella tricuspidata is proportional to temperature and inversely proportional to fish size. Between ambient (14°C) and 8° C muscle from all sizes of fish is similary affected by temperature; the lower the temperature the more the contraction time is slowed. Below 8° C muscle from large fish is affected more than is muscle from small fish. Contraction time of white muscle in the antarctic notothenioid Pagothenia borchgrevinki is about twice as fast as that of Girella tricuspidata at temperatures between 2–12°C, but at normal body temperature, contraction time of muscle from Girella tricuspidata (14°C) is about twice as fast as that of Pagothenia borchgrevinki (–1.9°C).  相似文献   

6.
The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r 2 = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency. Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen consumption patterns are likely to be quite different in field situation compared to a small lab tank. In addition, our methods could be useful to measure metabolic costs of growth and development, or bioassays for possible toxicological effects on fish.  相似文献   

7.
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degrees C and 10 degrees C. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degrees C, maximum velocity at all other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P. borchgrevinki to either -1 degrees C or 4 degrees C for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degrees C and 10 degrees C. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degrees C or 4 degrees C for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of 1 degrees C to 10 degrees C. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.  相似文献   

8.
We determined the maximum sustained swimming speed (Ucrit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between −1°C and 8°C. We also determined resting metabolic rate (VO2) at −1°C, 2°C, and 4°C. Ucrit of P. borchgrevinki was highest at −1°C (2.7±0.1 BL s−1) and rapidly decreased with temperature, representing a thermal performance breadth of only 5°C. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures.  相似文献   

9.
10.
Antarctic fish have a high polyunsaturated lipid content and their muscle cells have a high mitochondria density suggesting that Antarctic fish are under greater oxidative stress than temperate water fish. To test this hypothesis, the plasma concentrations of the antioxidant vitamins E and C were measured in two Antarctic fish species, Pagothenia borchgrevinki and Trematomus bernacchii, and compared with the plasma concentrations of these vitamins in two New Zealand temperate water fish species, blue cod (Parapercis colias) and banded wrasse (Notolabrus fucicola). Neither vitamin is known to be synthesised in fish and so must be obtained from the diet. The plasma from both Antarctic fish species had vitamin E concentrations five to six times higher than those found in the two temperate water fish species. However, significantly higher levels of vitamin C were only found in the plasma of T. bernacchii, a benthic Antarctic fish. The average level of vitamin C in the plasma of the cryopelagic P. borchgrevinki was approximately one-third that of T. bernacchii. The T. bernacchii plasma yielded a high range of vitamin C values, possibly reflecting differences in nutritional status among the animals captured. No beta-carotene was found in any of the fish plasma samples studied. The data suggest that even though Antarctic fish live at -1.5 degrees C they may be exposed to greater metabolic stress from free radical mediated oxidation than temperate water species.  相似文献   

11.
Volumetric imaging of fish locomotion   总被引:1,自引:0,他引:1  
Fishes use multiple flexible fins in order to move and maintain stability in a complex fluid environment. We used a new approach, a volumetric velocimetry imaging system, to provide the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes. This new technology allowed us to demonstrate conclusively the linked ring vortex wake pattern that is produced by the symmetrical (homocercal) tail of fishes, and to visualize for the first time the three-dimensional vortex wake interaction between the dorsal and anal fins and the tail. We found that the dorsal and anal fin wakes were rapidly (within one tail beat) assimilated into the caudal fin vortex wake. These results show that volumetric imaging of biologically generated flow patterns can reveal new features of locomotor dynamics, and provides an avenue for future investigations of the diversity of fish swimming patterns and their hydrodynamic consequences.  相似文献   

12.
Research on the neuronal control of locomotion in leeches spans almost four decades. Recent advances reviewed here include discoveries that: (1) interactions between multiple hormones modulate initiation of swimming; (2) stretch receptors associated with longitudinal muscles interact with the central oscillator circuit via electrical junctions; (3) intersegmental interactions, according to theoretical analyses, must be relatively weak compared to oscillator interactions within ganglia; and (4) multiple interacting neurons control the expression of alternative modes of locomotion. The innovative techniques that facilitated these advances include optical recording of membrane potential changes, simultaneous intracellular injection of high and low molecular weight fluorescent dyes, and detailed modeling via an input-output systems engineering approach.  相似文献   

13.
The fish swimming trace Undichna unisulca is reported from a sandstone block collected from the Upper Silurian (Ludlow) Burgsvik Formation of Gotland, Sweden. It represents the oldest record of a vertebrate trace (apart from coprolites), predating previous finds from the Lower Devonian by at least 10 Ma. A thelodont or acanthodian fish may have produced the sinusoidal trails with the aid of their caudal or anal fins while browsing slowly over the sediment whilst searching for food.  相似文献   

14.
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype—active bird nests—and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits.  相似文献   

15.
The oxygen consumption rates of two cyprinid fishes, carp (Cyprinus carpio L.) and roach (Rutilus rutilus (L.)), were analysed for a wide range of body mass and swimming speed by computerized intermittent-flow respirometry. Bioenergetic models were derived, based on fish mass (M) and swimming speed (U), to predict the minimal speed and mass-specific active metabolic rate (AMR) in these fishes (AMR=aMbUc). Mass and speed together explained more than 90% of the variance in total swimming costs in both cases. The derived models show that carp consume far more oxygen at a specific speed and body mass, thus being less efficient in energy use during swimming than roach. It was further found that in carp (AMR=0.02M0.8U0.95) the metabolic increment during swimming is more strongly effected by speed, whereas in roach (AMR=0.02M0.93U0.6) it is more strongly effected by body mass. The different swimming traits of carp and roach are suitable for their respective lifestyles and ecological demands.  相似文献   

16.
Antarctic marine invertebrates live in a cold, thermally stable environment and cannot tolerate large changes in body temperature (i.e. they are stenothermal). Their temperate relatives, by contrast, are eurythermal, living in warmer and thermally more variable environments. Have these different environments influenced how specific behaviours are affected by changes of temperature? This question was addressed in two temperate crustaceans, the decapod Carcinus maenas and isopod Ligia oceanica, and two Antarctic crustaceans, the isopod Glyptonotus antarcticus and amphipod Paraceradocus gibber. The thermal dependence of walking speed was analysed by contrasting the slopes of the linear part of each species’ behavioural curve. Over the temperature ranges analysed, the temperature sensitivity of walking speed in the stenotherms was 13–23% that of the eurytherms when measured in body lengths s?1. There was a linear relationship between walking speed and temperature up to +4.5°C in the Antarctic species G. antarcticus and P. gibber. Elevating temperature by up to 3.5°C above the maximum temperature experienced in the Antarctic (+1°C), does not lead to an acute breakdown of motor coordination. We describe for the first time the righting behaviour of G. antarcticus. The mean time-to-right tended to a minimum on warming from ?2 to+5°C, but this trend was not statistically significant. Our results suggest that the physiological adaptations which permit continued activity at low Antarctic temperatures have resulted in a lower thermal dependence of activity in Antarctic species, compared to related temperate species.  相似文献   

17.
The theory of maximum sustainable yield (MSY) underpins many fishery management regimes and is applied principally as a single species concept. Using a simple dynamic biomass production model we show that MSY can be identified from a long time series of multi-stock data at a regional scale in the presence of species interactions and environmental change. It suggests that MSY is robust and calculable in a multispecies environment, offering a realistic reference point for fishery management. Furthermore, the demonstration of the existence of MSY shows that it is more than a purely theoretical concept. There has been an improvement in the status of stocks in the Northeast Atlantic, but our analysis suggests further reductions in fishing effort would improve long-term yields.  相似文献   

18.
19.
Synopsis Subtidal studies of fish stocks conducted along a rock breakwater in Southern California reveal a rich and diverse fauna with elements from cool and warm temperate regions. More than 100 species have been observed with half of these resident. Only a single large, permanently territorial species occurs on the reef though many small, often cryptic species defend home and/or reproductive sites. Many of the larger, mobile species orient to temperature stratification and a portion of the diversity can be allied to the ecotonal effect of stable stratification. Both large predators and herbivores are rare; the majority of the species are micropredators, grazing on sedentary or benthic microinvertebrates.Reproduction is keyed to spring-summer seasons, generally with pelagic eggs, embryos and larvae. The live-bearing resident embiotocids show the least fluctuation in numbers while many oviparous species have shown major changes in annual success during the study period. Although the success of individual species varies, the diversity and total abundance of fishes has remained relatively stable for the reef community as a whole. This stability cannot be considered to reflect an equilibrium community and in fact the structure of the community has changed significantly during the five year study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号