首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Splicing of tRNA precursors in Saccharomyces cerevisiae extracts proceeds in two steps; excision of the intervening sequence and ligation of the tRNA halves. The ability to resolve these two steps and the distinct physical properties of the endonuclease and ligase suggested that the splicing steps may not be concerted and that these two enzymes may act independently in vivo. A ligase competition assay was developed to examine whether the excision and ligation steps in tRNA splicing in vitro are concerted or independent. The ability of either yeast ligase or T4 ligase plus kinase to join the tRNA halves produced by endonuclease and the distinct structures of the reaction products provided the basis for the competition assay. In control reactions, joining of isolated tRNA halves formed by preincubation with endonuclease was measured. The ratio of yeast to T4 reaction products in these control assays reflected the ratio of the enzyme activities, as would be expected if each has equal access to the substrate. In splicing competition assays, endonuclease and pre-tRNA were added to ligase mixtures, and joining of the halves that were formed was measured. In these assays the products were predominantly those of the yeast ligase even when the T4 enzymes were present in excess. These results demonstrate preferential access of yeast ligase to the endonuclease products and provide evidence for the assembly of a functional tRNA splicing complex in vitro. This observation has important implications for the organization of the splicing components and of the gene expression pathway in vivo.  相似文献   

2.
Non-glucosylated T4 DNA was restricted with the endonuclease EcoRI and the mixture of DNA fragments separated by gel electrophoresis and transcribed with purified Escherichia coli RNA polymerase. Three purified fragments were shown to act as templates for tRNA synthesis. A smaller fragment, shown to be hybridizable to 32P-labeled T4 tRNA was not transcribable. It was concluded that the promoter for T4 tRNA synthesis had been separated from the structural genes in the smaller fragment by EcoRI and that the distal portion of the tRNA gene cluster lacks internal promoters which display in vitro activity. Preparations of non-glucosylated T4 DNA were never fully restricted with EcoRI and when the larger purified fragments carrying the tRNA were restricted with excess enzyme only a slight cleavage to yield the smaller fragments was obtained. The property of the DNA-limiting complete restriction is not know.  相似文献   

3.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

4.
Paushkin SV  Patel M  Furia BS  Peltz SW  Trotta CR 《Cell》2004,117(3):311-321
tRNA splicing is a fundamental process required for cell growth and division. The first step in tRNA splicing is the removal of introns catalyzed in yeast by the tRNA splicing endonuclease. The enzyme responsible for intron removal in mammalian cells is unknown. We present the identification and characterization of the human tRNA splicing endonuclease. This enzyme consists of HsSen2, HsSen34, HsSen15, and HsSen54, homologs of the yeast tRNA endonuclease subunits. Additionally, we identified an alternatively spliced isoform of SEN2 that is part of a complex with unique RNA endonuclease activity. Surprisingly, both human endonuclease complexes are associated with pre-mRNA 3' end processing factors. Furthermore, siRNA-mediated depletion of SEN2 exhibited defects in maturation of both pre-tRNA and pre-mRNA. These findings demonstrate a link between pre-tRNA splicing and pre-mRNA 3' end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events.  相似文献   

5.
Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.  相似文献   

6.
7.
Decanucleotide (Ap)6GpTpUpC and undecanucleotide GpApUpCpCp (Up)5U have been synthesised. They constitute 5'- and 3'-parts of a 21-mer which imitates T psi C-arm of yeast tRNA(Val1) and is a potential substrate for m1A-methylases and pseudouridine synthetase. The oligonucleotide blocks, synthesised enzymatically by means of ribonucleases of various substrate specificity and polynucleotide phosphorylases (TpUpC, ApUpCpC, pGpTpUpC, GpApUpCpC) or obtained by hydrolysis of poly(U) and poly(A) with Serratia marcescens endonuclease (hexauridilate and hexaadenilate), were joined by T4 RNA ligase.  相似文献   

8.
We have constructed a plasmid expressing E. coli M1 RNA, the catalytic RNA subunit of ribonuclease P, under the control of a phage T7 promoter. The active M1 RNA species synthesized in vitro by T7 RNA polymerase from this vector was reacted with the tRNA(Gln) - tRNA(Leu) precursor RNA (Band K) encoded by phage T4. Only the tRNA(Leu) moiety of this dimeric precursor RNA contains the 3' terminal C-C-A sequence common to all tRNAs. We observed that protein-free M1 RNA was capable of processing the precursor RNA at the 5' ends of both tRNA tRNA sequences. The rate of cleavage of the tRNA(Gln) sequence was more strongly dependent on [Mg2+] than that of tRNA(Leu), increasing severalfold between 100 and 500 mM Mg2+, conditions under which the rate of cleavage at the tRNA(Leu) sequence was constant.  相似文献   

9.
10.
N K Tanner  M M Hanna  J Abelson 《Biochemistry》1988,27(24):8852-8861
Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs.  相似文献   

11.
The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S.solfataricus endonuclease at 3.1 angstroms resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.  相似文献   

12.
In vitro transcription of E. coli tRNA genes.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

13.
The structural relationship between the transfer ribonucleic acid (tRNA) and the ribosomal RNA (rRNA) genes of Bacillus subtilis has been studied by restriction endonuclease analysis of total chromosomal deoxyribonucleic acid (DNA) and characterization of DNA fragments cloned in Escherichia coli. The DNA sequences encoding rRNA and tRNA were assayed by hybridization to radioactive RNA. The results support the conclusion that the tRNA genes are interspersed between and closely linked to the rRNA genes of B. subtilis. They probably do not appear between the 16S and 23S rRNA genes as in E. coli.  相似文献   

14.
M Gurevitz  D Apirion 《Biochemistry》1983,22(17):4000-4005
In order to understand why the first tRNA (tRNAGln) in the T4 tRNA gene cluster is not produced when T4 infects an RNase III- mutant of Escherichia coli, RNA metabolism was analyzed in RNase III- RNase P- (rnc, rnp) cells infected with bacteriophage T4. After such an infection a new dimeric precursor RNA molecule of tRNAGln and tRNALeu has been identified and analyzed. This molecule is structurally very similar to K band RNA that accumulates in rnc+ rnp strains. It is four nucleotides shorter than K RNA at the 5' end. This molecule like K RNA contains two RNase P processing sites at the 5' ends of each tRNA. Both sites are accessible to RNase P. However, while in the K RNA the site at the 5' end of tRNALeu (the site in the middle of the substrate) is more efficiently cleaved than the other site, this differential is even increased in the Ks (K like) molecule. This difference is sufficiently large that in vivo in the RNase III- strain the smaller precursor of tRNAGln is degraded rather than being matured to tRNAGln by RNase P. This information contributes to the elucidation of the key role of RNase III in the processing of T4 tRNA. It shows the dependence of RNase P activity at the 5' end of tRNAGln on a correct and specific cleavage by RNase III at a position six nucleotides proximal to the RNase P site, and it explains why in the absence of RNase III the first tRNA in the T4 tRNA cluster, tRNAGln, does not accumulate.  相似文献   

15.
A synthetic substrate for tRNA splicing   总被引:15,自引:0,他引:15  
  相似文献   

16.
17.
In 1989, Sidney Altman and Thomas R. Cech shared the Nobel Prize in Chemistry for their discovery of catalytic properties of RNA. Cech was studying the splicing of RNA in a unicellular organism called Tetrahymena thermophila. He found that the precursor RNA could splice in vitro in the absence of proteins. Altman studied ribonuclease P (RNase P), a ribonucleoprotein that is a key enzyme in the biosynthesis of tRNA. RNase P is an RNA processing endonuclease that specifically cleaves precursors of tRNA, releasing 5' precursor sequences and mature tRNAs. RNase P is involved in processing all species of tRNA and is present in all cells and organelles that carry out tRNA synthesis. What follows is a personal recollection by Altman of how he came to study this remarkable enzyme.  相似文献   

18.
Substrate recognition and splice site determination in yeast tRNA splicing   总被引:23,自引:0,他引:23  
V M Reyes  J Abelson 《Cell》1988,55(4):719-730
S. cerevisae tRNA introns interrupt the gene at a constant position in the anticodon loop. Pre-tRNAs are matured by an endonuclease and a ligase. The endonuclease alone can accurately release the intron from the pre-tRNA. Here, we investigate the mechanism of splice site selection by the endonuclease. We propose that it initially recognizes features in the mature domain common to all tRNAs. Once positioned on the enzyme, the splice sites are recognizable because they are a fixed distance from the mature domain. To test this hypothesis, we developed a system for synthesizing pre-tRNA by bacteriophage T7 RNA polymerase. To search for recognition sites, we made several mutations. Mutations of C56 and U8 strongly affect endonuclease recognition of pre-tRNA. With insertion and deletion mutations, we show that the anticodon stem determines splicing specificity. The sequence and structure of the intron are not strong determinants of splice site selection.  相似文献   

19.
RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract   总被引:9,自引:0,他引:9  
C L Greer  B Javor  J Abelson 《Cell》1983,33(3):899-906
Ligase activity was detected in extracts of Escherichia coli, Clostridium tartarivorum, Rhodospirillum salexigens, Chromatium gracile, and Chlorobium limicola. Ligase was measured by joining of tRNA halves produced from yeast IVS-containing tRNA precursors by a yeast endonuclease. The structure of tRNATyr halves joined by an E. coli extract was examined. The ligated junction is resistant to nuclease P1 and RNAase T2 but sensitive to venom phosphodiesterase and alkaline hydrolysis, consistent with a 2',5' linkage. The nuclease-resistant junction dinucleotide comigrates with authentic (2',5') APA marker in thin-layer chromatography. The phosphate in the newly formed phosphodiester bond is derived from the pre-tRNA substrate. The widespread existence of a bacterial ligase raises the possibility of a novel class of RNA processing reactions.  相似文献   

20.
The intron-containing tRNA(Trp) precursor from Halobacterium volcanii, like many intron-containing archaebacterial precursor tRNAs, can assume a structure in which the two intron endonuclease cleavage sites are localized in two three-nucleotide loops separated by four base pairs. To investigate the role of this structure in cleavage by the halophilic endonuclease, a series of mutant tRNA(Trp) RNAs were prepared and evaluated as substrates. We find that alterations in this structure result in the loss of cleavage at both 5' and 3' sites. Cleavage of a 35-nucleotide model RNA substrate, containing only these features, demonstrates that sequences and structures present at the exon-intron boundaries are sufficient for recognition and cleavage. We have also examined the mechanism used by the halophilic endonuclease to identify the cleavage sites. Addition of a single base, or a base pair in the anticodon stem above the cleavage sites, does not affect the cleavage site selection. The addition of nucleotides between the two cleavage sites significantly decreases cleavage efficiency and has an effect on the cleavage site selection. These results demonstrate that the halophilic endonuclease requires a defined structure at the exon-intron boundaries and does not identify its cleavage sites by a measurement mechanism like that employed by eukaryotic tRNA intron endonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号