首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.  相似文献   

2.
3.
4.
In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1~P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1~P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.  相似文献   

5.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

6.
7.
We have isolated a gene, pmk1+, a third mitogen-activated protein kinase (MAPK) gene homolog from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence shows the most homology (63 to 65% identity) to those of budding yeast Saccharomyces Mpk1 and Candida Mkc1. The Pmk1 protein contains phosphorylated tyrosines, and the level of tyrosine phosphorylation was increased in the dsp1 mutant which lacks an attenuating phosphatase for Pmk1. The level of tyrosine phosphorylation appears constant during hypotonic or heat shock treatment. The cells with pmk1 deleted (delta pmk1) are viable but show various defective phenotypes, including cell wall weakness, abnormal cell shape, a cytokinesis defect, and altered sensitivities to cations, such as hypersensitivity to potassium and resistance to sodium. Consistent with a high degree of conservation of amino acid sequence, multicopy plasmids containing the MPK1 gene rescued the defective phenotypes of the delta pmk1 mutant. The frog MAPK gene also suppressed the pmk1 disruptant. The results of genetic analysis indicated that Pmk1 lies on a novel MAPK pathway which does not overlap functionally with the other two MAPK pathways, the Spk1-dependent mating signal pathway and Sty1/Spc1/Phh1-dependent stress-sensing pathway. In Saccharomyces cerevisiae, Mpk1 is involved in cell wall integrity and functions downstream of the protein kinase C homolog. In contrast, in S. pombe, Pmk1 may not act in a linear manner with respect to fission yeast protein kinase C homologs. Interestingly, however, these two pathways are not independent; instead, they regulate cell integrity in a coordinate manner.  相似文献   

8.
The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1Δ strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways.  相似文献   

9.
10.
Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.  相似文献   

11.
12.
Gab1-SHP2 association is required for Erk mitogen-activated protein kinase activation by several growth factors. Gab1-SHP2 interaction activates SHP2. However, an activated SHP2 still needs to associate with Gab1 to mediate Erk activation. It was unclear whether SHP2 is required to dephosphorylate a negative phosphorylation site on Gab1 or whether SHP2 needs the Gab1 pleckstrin homology (PH) domain to target it to the plasma membrane. We found that expression of a fusion protein consisting of the Gab1 PH domain and an active SHP2 (Gab1PH-SHP2DeltaN) induced constitutive Mek1 and Erk2 activation. Linking the active SHP2DeltaN to the PDK1 PH domain or the FRS2beta myristoylation sequence also induced Mek1 activation. Mek1 activation by Gab1PH-SHP2DeltaN was inhibited by an Src inhibitor and by Csk. Significantly, Gab1PH-SHP2DeltaN induced Src activation. Gab1PH-SHP2DeltaN expression activated Ras, and the Gab1PH-SHP2DeltaN-induced Mek1 activation was blocked by RasN17. These findings suggest that Gab1PH-SHP2DeltaN activated a signaling step upstream of Src and Ras. The SHP2 tyrosine phosphatase activity is essential for the function of the fusion protein. Together, these data show that the Gab1 sequence, besides the PH domain and SHP2 binding sites, is dispensable for Erk activation, suggesting that the primary role of Gab1 association with an activated SHP2 is to target it to the membrane.  相似文献   

13.
Gong K  Li Z  Xu M  Du J  Lv Z  Zhang Y 《The Journal of biological chemistry》2008,283(43):29028-29036
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.  相似文献   

14.
15.
The mitogen-activated protein (MAP) kinase ERK2 is an essential signal transduction molecule that mediates extracellular signaling by all polypeptide growth factors. Full activation of ERK2 requires phosphorylation at both a threonine residue (Thr(183)) conserved in most protein kinases as well as a tyrosine residue (Tyr(185)) unique to members of the mitogen-activated protein kinase family. We have characterized the kinetic role of phosphorylation at each site with respect to the overall activation mechanism, providing a complete picture of the reaction steps involved. Phosphorylation at Tyr(185) serves to configure the ATP binding site, while phosphorylation at both residues is required to stabilize binding of the protein substrate, myelin basic protein. Similar control mechanisms are employed to stabilize ATP and myelin basic protein in the phosphoryl group transfer reaction, accounting for the enormous increase in turnover rate. The mechanism of ERK2 activation is kinetically similar to that of the cell cycle control protein, cdk2/cyclinA. Phosphorylation of Tyr(185) in ERK2 and association of cyclinA with cdk2 both serve to stabilize ATP binding. Subsequent phosphorylation of both enzymes on threonine serves to stabilize binding of the phosphoacceptor substrate.  相似文献   

16.
ISP-1 is a new type of immunosuppressant, the structure of which is homologous to that of sphingosine. In a previous study, ISP-1 was found to inhibit mammalian serine palmitoyltransferase, the primary enzyme involved in sphingolipid biosynthesis, and to reduce the intracellular pool of sphingolipids. ISP-1 induces the apoptosis of cytotoxic T cells, which is triggered by decreases in the intracellular levels of sphingolipids. In this study, the inhibition of yeast (Saccharomyces cerevisiae) proliferation by ISP-1 was observed. This ISP-1-induced growth inhibition was also triggered by decreases in the intracellular levels of sphingolipids. In addition, DNA duplication without cytokinesis was detected in ISP-1-treated yeast cells on flow cytometry analysis. We have cloned multicopy suppressor genes of yeast which overcome the lethal sphingolipid depletion induced by ISP-1. One of these genes, SLI2, is synonymous with YPK1, which encodes a serine/threonine kinase. Kinase-dead mutants of YPK1 did not show any resistance to ISP-1, leading us to predict that the kinase activity of the Ypk1 protein should be essential for this resistance to ISP-1. Ypk1 protein overexpression had no effect on sphingolipid biosynthesis by the yeast. Furthermore, both the phosphorylation and intracellular localization of the Ypk1 protein were regulated by the intracellular sphingolipid levels. These data suggest that the Ypk1 protein is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. The Ypk1 protein was reported to be a functional homologue of the mammalian protein kinase SGK, which is a downstream kinase of 3-phosphoinositide-dependent kinase 1 (PDK1). PDK1 phosphotidylinositol (PI) is regulated by PI-3,4,5-triphosphate and PI-3,4-bisphosphate through the pleckstrin homology (PH) domain. Overexpression of mammalian SGK also overcomes the sphingolipid depletion in yeast. Taking both the inability to produce PI-3,4, 5-triphosphate and PI-3,4-bisphosphate and the lack of a PH domain in the yeast homologue of PDK1, the Pkh1 protein, into account, these findings further suggest that yeast may use sphingolipids instead of inositol phospholipids as lipid mediators.  相似文献   

17.
18.
M-CSF triggers the activation of extracellular signal-regulated protein kinases (ERK)-1/2. We show that inhibition of this pathway leads to the arrest of bone marrow macrophages at the G0/G1 phase of the cell cycle without inducing apoptosis. M-CSF induces the transient expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), which correlates with the inactivation of ERK-1/2. Because the time course of ERK activation must be finely controlled to induce cell proliferation, we studied the mechanisms involved in the induction of MKP-1 by M-CSF. Activation of ERK-1/2 is not required for this event. Therefore, M-CSF activates ERK-1/2 and induces MKP-1 expression through different pathways. The use of two protein kinase C (PKC) inhibitors (GF109203X and calphostin C) revealed that M-CSF induces MKP-1 expression through a PKC-dependent pathway. We analyzed the expression of different PKC isoforms in bone marrow macrophages, and we only detected PKCbetaI, PKCepsilon, and PKCzeta. PKCzeta is not inhibited by GF109203X/calphostin C. Of the other two isoforms, PKCepsilon is the best candidate to mediate MKP-1 induction. Prolonged exposure to PMA slightly inhibits MKP-1 expression in response to M-CSF. In bone marrow macrophages, this treatment leads to a complete depletion of PKCbetaI, but only a partial down-regulation of PKCepsilon. Moreover, no translocation of PKCbetaI or PKCzeta from the cytosol to particulate fractions was detected in response to M-CSF, whereas PKCepsilon was constitutively present at the membrane and underwent significant activation in M-CSF-stimulated macrophages. In conclusion, we remark the role of PKC, probably isoform epsilon, in the negative control of ERK-1/2 through the induction of their specific phosphatase.  相似文献   

19.
We employed the constitutive BCK1-20 allele of the gene for the MAP kinase kinase kinase (MAPKKK) in the yeast Pkc signal transduction pathway to develop a genetic screen for mutants in genes encoding upstream components. Transposon mutagenesis yielded a mutant that was completely dependent on the active allele in the absence of osmotic stabilization. The transposon had integrated at the yeast SLG1 (HCS77) locus. This gene encodes a putative membrane protein. Haploid slg1 deletion strains are sensitive to caffeine, as expected for mutants in the Pkc pathway, as well as a variety of other drugs. The response to elevated temperatures and the dependence on osmotic stabilization depends on the genetic background. Thus, in the strain used for mutagenesis, disruption of SLG1 causes the cells to become non-viable in the absence of osmotic stabilization at both 30°?C and 37°?C. In a different genetic background this phenotype was not observed. Sensitivity of the haploid deletion mutants to caffeine can be partially suppressed by overexpression of genes for other components of the Pkc pathway, such as PKC1, SLT2, ROM2, and STE20. In addition, a SLG1-lacZ reporter construct shows higher expression in the presence of caffeine or magnesium chloride in a wild-type diploid background.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号