共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasma membrane-associated redox systems play important roles in regulation of cell growth, internal pH, signal transduction, apoptosis, and defense against pathogens. Stimulation of cell growth and stimulation of the redox system of plasma membranes are correlated. When cell growth is inhibited by antitumor agents such as doxorubicin, capsaicin, and antitumor sulfonylureas, redox activities of the plasma membrane also are inhibited. A doxorubicin-inhibited NADH-quinone reductase was characterized and purified from plasma membranes of rat liver. First, an NADH-cytochrome b(5) reductase, which was doxorubicin-insensitive, was removed from the plasma membranes by the lysosomal protease, cathepsin D. After removal of the NADH-cytochrome b(5) reductase, the plasma membranes retained a doxorubicin-inhibited NADH-quinone reductase activity. The enzyme, with an apparent molecular mass of 57 kDa, was purified 200-fold over the cathepsin D-treated plasma membranes. The purified enzyme had also an NADH-coenzyme Q(0) reductase (NADH: external acceptor (quinone) reductase; EC 1.6.5.) activity. Partial amino acid sequence of the enzyme showed that it was unique with no sequence homology to any known protein. Antibody against the enzyme (peptide sequence) was produced and affinity-purified. The purified antibody immunoprecipitated both the NADH-ferricyanide reductase activity and NADH-coenzyme Q(0) reductase activity of plasma membranes and cross-reacted with human chronic myelogenous leukemia K562 cells and doxorubicin-resistant human chronic myelogenous leukemia K562R cells. Localization by fluorescence microscopy showed that the reaction was with the external surface of the plasma membranes. The doxorubicin-inhibited NADH-quinone reductase may provide a target for the anthracycline antitumor agents and a candidate ferricyanide reductase for plasma membrane electron transport. 相似文献
2.
Purification of a NADH-ferricyanide reductase from plant microsomal membranes with a zwitterionic detergent 总被引:1,自引:0,他引:1
Anne-Marie Galle Claire Bonnerot Alain Jolliot Jean-Claude Kader 《Biochemical and biophysical research communications》1984,122(3):1201-1205
A microsomal NADH-ferricyanide reductase was purified to homogeneity from potato tubers. A zwitterionic detergent (CHAPS) was used for the extraction of this reductase which is the first to be purified from plant microsomal membranes. The successive steps of purification included an anion exchange column (DEAE-cellulose or DEAE-Trisacryl), a blue-Ultrogel affinity column and a gel filtration on Sephadex G75. The purification factor was 280 and the yield was 1.6%. The protein has an apparent molecular weight of 44,000±1,000 as estimated from SDS-PAGE. This successful purification opens new perspectives in the study of oleate desaturase of higher plants, which is assumed to contain NADH-ferricyanide reductase as an essential component. 相似文献
3.
It was found that when Escherichia coli is grown in the presence of 0.2-0.3 mM menadione (2-methyl-1,4-naphthoquinone), an FMN-dependent NADH-quinone reductase increases more than 20-fold in the cytoplasmic fraction. The menadione-induced quinone reductase was isolated from the cytoplasmic fraction of induced cells. The purified enzyme had an Mr of 24 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme required flavin as a cofactor and a half-maximum activity was obtained with 0.54 microM FMN or 16.5 microM FAD. The enzyme had a broad pH optimum at pH 7.0-8.0 and reacted with NADH, but not with NADPH. The reaction followed a ping-pong mechanism and the intrinsic Km values for NADH and menadione were estimated to be 132 microM and 2.0 microM, respectively. Dicoumarol was a simple competitive inhibitor with respect to NADH with a Ki value of 0.22 microM. The electron acceptor specificity of this enzyme was very similar to that of NAD(P)H: (quinone acceptor) oxidoreductase (EC 1.6.99.2, DT-diaphorase) from rat liver. Since menadione is reduced by the two-electron reduction pathway to menadiol, the induction of this enzyme is likely to be an adaptive response of E. coli to partially alleviate the toxicity of menadione. 相似文献
4.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed. 相似文献
5.
V A Rapisarda L R Montelongo R N Farías E M Massa 《Archives of biochemistry and biophysics》1999,370(2):143-150
Previous results from our laboratory have shown that NADH-supported electron flow through the Escherichia coli respiratory chain promotes the reduction of cupric ions to Cu(I), which mediates damage of the respiratory system by hydroperoxides. The aim of this work was to characterize the NADH-linked cupric reductase activity from the E. coli respiratory chain. We have used E. coli strains that either overexpress or are deficient in the NADH dehydrogenase-2 (NDH-2) to demonstrate that this membrane-bound protein catalyzes the electron transfer from NADH to Cu(II), but not to Fe(III). We also show that purified NDH-2 exhibits NADH-supported Cu(II) reductase activity in the presence of either FAD or quinone, but is unable to reduce Fe(III). The K(m) values for free Cu(II) were 32 +/- 5 pM in the presence of saturating duroquinone and 22 +/- 2 pM in the presence of saturating FAD. The K(m) values for NADH were 6.9 +/- 1.5 microM and 6.1 +/- 0.7 microM in the presence of duroquinone and FAD, respectively. The quinone-dependent Cu(II) reduction occurred through both O(*-)(2)-mediated and O(*-)(2)-independent pathways, as evidenced by the partial inhibitory effect (30-50%) of superoxide dismutase, by the reaction stoichiometry, and by the enzyme turnover numbers for NADH and Cu(II). The cupric reductase activity of NDH-2 was dependent on thiol groups which were accessible to p-chloromercuribenzoate at low, but not at high, ionic strength of the medium, a fact apparently connected to a conformational change of the protein. To our knowledge, this is the first protein with cupric reductase activity to be isolated and characterized in its biochemical properties. 相似文献
6.
Gary Cecchini Imke Schr?der Robert P Gunsalus Elena Maklashina 《Biochimica et biophysica acta》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed. 相似文献
7.
8.
An FMN-dependent NADH-quinone reductase is induced in Escherichia coli by growing the cells in the presence of menadione (2-methyl-1,4-naphthoquinone). Since the properties of induced enzyme are very similar to those of NAD(P)H: (quinone-acceptor) oxidoreductase (EC 1.6.99.2), known as DT-diaphorase, from animal cells, structural requirements of quinone derivatives as an inducer of NADH-quinone reductase in E. coli were examined. Among quinone derivatives examined, it was found that 2-alkyl-1,4-quinone structure with C-3 unsubstituted or substituted with Br is critical as a common inductive signal. Michael reaction acceptors which have been reported to be strong inducers of DT-diaphorase in mouse hepatoma cells were not always effective inducers in E. coli. However, several compounds, such as 2-methylene-4-butyrolactone, methylacrylate and methyl vinyl ketone, showed a slight inductive activity. The efficient inducers of NADH-quinone reductase in E. coli contain 1,4-quinone structure as a part of the inductive signal. These compounds belong to Michael acceptors and are likely to conjugate with thiol compounds such as glutathione. 相似文献
9.
10.
Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties 总被引:15,自引:0,他引:15
M Futai 《Biochemistry》1973,12(13):2468-2474
11.
C H MacGregor C A Schnaitman D E Normansell 《The Journal of biological chemistry》1974,249(16):5321-5327
12.
Purification of a new dihydrolipoamide dehydrogenase from Escherichia coli. 总被引:4,自引:3,他引:1 下载免费PDF全文
G Richarme 《Journal of bacteriology》1989,171(12):6580-6585
I purified a new dihydrolipoamide dehydrogenase from a lpd mutant of Escherichia coli deficient in the lipoamide dehydrogenase (EC 1.6.4.3) common to the pyruvate dehydrogenase (EC 1.2.4.1) and 2-oxoglutarate dehydrogenase complexes. The occurrence of the new lipoamide dehydrogenase in lpd mutants, including a lpd deletion mutant and the immunological properties of the enzyme, showed that it is different from the lpd gene product. The new dihydrolipoamide dehydrogenase had a molecular weight of 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was expressed in low amounts. It catalyzed the NAD+-dependent reduction of dihydrolipoamide with a maximal activity of 20 mumol/min per mg of protein and exhibited a hyperbolic dependence of catalytic activity on the concentration of both dihydrolipoamide and NAD+. The possible implication of the new dihydrolipoamide in the function of 2-oxo acid dehydrogenase complexes is discussed, as is its relation to binding protein-dependent transport. 相似文献
13.
Purification of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli strain 080 总被引:3,自引:0,他引:3
Purification studies of 7 alpha-hydroxysteroid dehydrogenase (7 alpha-HSDH) (EC 1.1.1.159) from Escherichia coli 080 showed that 1.59-fold purification could be achieved by heating (60 degrees C for 10 min) the ultracentrifuged enzyme preparation, and 6.46-fold purification was achieved by subsequent precipitation with ammonium sulfate. Further purification on Sephadex G-100 gel gave 10.1-fold purification. After pooling and concentrating the active fractions obtained from the Sephadex G-100 filtration, an 11.1-fold purification was achieved using DEAE-cellulose chromatography. The purified enzyme produced a single band on polyacrylamide gel electrophoresis and its molecular weight was determined to be 54,000. The enzyme was immunogenic and showed immunoprecipitation with homologus antisera. 相似文献
14.
15.
Purification and properties of a diheme cytochrome b561 of the Escherichia coli respiratory chain 总被引:1,自引:0,他引:1
A new b-type cytochrome, cytochrome b561 (Murakami, H., Kita, K., Oya, H., and Anraku, Y. (1984) Mol. Gen. Genet. 196, 1-5) was purified to near homogeneity from the cytochrome b561-amplified Escherichia coli K12 strain HM204/pAM5029. The purified cytochrome b561 was a single polypeptide with a molecular weight of 18,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point was determined to be 9.6. The difference spectrum of the cytochrome at 77 K shows a major alpha-absorption peak at 561 nm and a minor peak at 555 nm. The absolute spectrum at room temperature of the oxidized form of the cytochrome had an absorption peak at 414 nm, and that of the reduced form had peaks at 562, 530, and 428 nm. The oxidation-reduction potential of the cytochrome was estimated to be +20 mV. The cytochrome contained 91.2 nmol of heme/mg of protein, showing that it was a cytoplasmic membrane-bound, b-type diheme cytochrome. 相似文献
16.
Purification and properties of nitrite reductase from Escherichia coli K12. 总被引:9,自引:0,他引:9 下载免费PDF全文
NADH-nitrite oxidoreductase (EC 1.6.4) was purified to better than 95% homogeneity from batch cultures of Escherichia coli strain OR75Ch15, which is partially constitutive for nitrite reductase synthesis. Yields of purified enzyme were low, mainly because of a large loss of activity during chromatography on DEAE-cellulose. The quantitative separation of cytochrome c-552 from nitrite reductase activity resulted in an increase in the specific activity of the enzyme: this cytochrome is not therefore an integral part of nitrite reductase. The subunit molecular weights of nitrite reductase and of a haemoprotein contaminant, as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, were 88000 and 80000 respectively. The sedimentation coefficient was calculated to be in the range 8.5-9.5S, consistent with a mol.wt. of 190000. It is suggested therefore that the native enzyme is a dimer with two identical or similar-sized subunits. Purest samples contained 0.4 mol of flavin/mol of enzyme, but no detectable haem. Catalytic activity was totally inhibited by 20 micron-p-chloromercuribenzoate and 1 mM-cyanide, slightly inhibited by 1 micron-sulphite and 10mM-arsenite, but insensitive to 1 mM-2,2'-bipyridine, 4mM-1,10-phenanthroline and 10mM-NaN3. Three molecules of NADH were oxidized for each NO2-ion reduced: the product of the reaction is therefore assumed to be NH4+. The specific activity of hydroxylamine reductase increased at each step in the purification of nitrite reductase, and the elution profiles for these two activities during chromatography on DEAE-Sephadex were coincident. It is likely that a single enzyme is responsible for both activities. 相似文献
17.
Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB-8 总被引:2,自引:0,他引:2
Two types of the NADH-quinone reductase were isolated from Thermus thermophilus HB-8 membranes, by use of the nonionic detergent, dodecyl beta-maltoside, and NAD-agarose affinity, DEAE-cellulose, hydroxyapatite, and Superose 6 column chromatography. One of these (NADH dehydrogenase 1) is a complex composed of 10 unlike polypeptides, and the other (NADH dehydrogenase 2) exhibits a single band (Mr 53,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 1 was about 14 times higher than that of the dodecyl beta-maltoside extract and partially rotenone sensitive. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 2 was about 30-fold as high as that of the dodecyl beta-maltoside extract and rotenone insensitive. The purified NADH dehydrogenase 1 contained noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The ratio of FMN to non-heme iron to acid-labile sulfide was 1:11-12:7-9. The high content of iron and labile sulfide is suggestive of the presence of several iron-sulfur clusters. The purified NADH dehydrogenase 2 contained noncovalently bound FAD and no non-heme iron or acid-labile sulfide. The activities of both NADH dehydrogenases were stable at temperatures of greater than or equal to 80 degrees C. The occurrence of two distinct types of NADH dehydrogenase as a common feature in the membranes of various aerobic bacteria is discussed. 相似文献
18.
Dihydrofolate reductase has been purified 40-fold to apparent homogeneity from a trimethoprim-resistant strain of Escherichia coli (RT 500) using a procedure that includes methotrexate affinity column chromatography. Determinations of the molecular weight of the enzyme based on its amino acid composition, sedimentation velocity, and sodium dodecyl sulfate gel electrophoresis gave values of 17680, 17470 and 18300, respectively. An aggregated form of the enzyme with a low specific activity can be separated from the monomer by gel filtration; treatment of the aggregate with mercaptoethanol or dithiothreitol results in an increase in enzymic activity and a regeneration of the monomer. Also, multiple molecular forms of the monomer have been detected by polyacrylamide gel electrophoresis. The unresolved enzyme exhibits two pH optima (pH 4.5 and pH 7.0) with dihydrofolate as a substrate. Highest activities are observed in buffers containing large organic cations. In 100 mM imidazolium chloride (pH 7), the specific activity is 47 mumol of dihydrofolate reduced per min per mg at 30 degrees. Folic acid also serves as a substrate with a single pH optimum of pH 4.5. At this pH the Km for folate is 16 muM, and the Vmax is 1/1000 of the rate observed with dihydrofolate as the substrate. Monovalent cations (Na+, K+, Rb+, and Cs+) inhibit dihydrofolate reductase; at a given ionic strength the degree of inhibition is a function of the ionic radius of the cation. Divalent cations are more potent inhibitors; the I50 of BaCl2 is 250 muM, as compared to 125 mM for KCl. Anions neither inhibit nor activate the enzyme. 相似文献
19.
20.
Purified respiratory nitrate reductase from Escherichia coli is able to use either reduced viologen dyes or quinols as the electron donor and nitrate, chlorate, or bromate as the electron acceptor. When reduced viologen dyes act as the electron donor, the enzyme follows a compulsory-order, "Theorell-Chance" mechanism, in which it is an enzyme-nitrate complex that is reduced rather than the free enzyme. In contrast, if quinols are used as the electron donor, then the enzyme operates by a two-site, enzyme-substitution mechanism. Partial proteolysis of the cytochrome b containing holoenzyme by trypsin results in loss of cytochrome b and in cleavage of one of the enzyme's subunits. The cytochrome-free derivative exhibits a viologen dye dependent activity that is indistinguishable from that of the holoenzyme, but it is incapable of catalyzing the quinol-dependent reaction. The quinol-dependent, but not the viologen dye dependent, activity is inhibited irreversibly by exposure to diethyl pyrocarbonate and reversibly by treatment with 2-n-heptyl-4-hydroxyquinoline N-oxide. We conclude that the holoenzyme has two independent and spatially distinct active sites, one for quinol oxidation and the other for nitrate reduction. 相似文献