首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to biliverdin by utilizing O(2) and NADPH. HO (apoHO) was crystallized as twinned P3(2) with three molecules per asymmetric unit, and its crystal structure was determined at 2.55 A resolution. Structural comparison of apoHO and its complex with heme (HO-heme) showed three distinct differences. First, the A helix of the eight alpha-helices (A-H) in HO-heme, which includes the proximal ligand of heme (His25), is invisible in apoHO. In addition, the B helix, a portion of which builds the heme pocket, is shifted toward the heme pocket in apoHO. Second, Gln38 is shifted toward the position where the alpha-meso carbon of heme is located in HO-heme. Nepsilon of Gln38 is hydrogen-bonded to the carbonyl group of Glu29 located at the C-terminal side of the A helix in HO-heme, indicative that this hydrogen bond restrains the angle between the A and B helices in HO-heme. Third, the amide group of Gly143 in the F helix is directed outward from the heme pocket in apoHO, whereas it is directed toward the distal ligand of heme in HO-heme. This means that the F helix around Gly143 must change its conformation to accommodate heme binding. The apoHO structure has the characteristic that the helix on one side of the heme pocket fluctuates, whereas the rest of the structure is similar to that of HO-heme, as observed in such hemoproteins as myoglobin and cytochromes b(5) and b(562). These structural features of apoHO suggest that the orientation of the proximal helix and the position of His25 are fixed upon heme binding.  相似文献   

2.
Crystal structures of the ferric and ferrous heme complexes of HmuO, a 24-kDa heme oxygenase of Corynebacterium diphtheriae, have been refined to 1.4 and 1.5 A resolution, respectively. The HmuO structures show that the heme group is closely sandwiched between the proximal and distal helices. The imidazole group of His-20 is the proximal heme ligand, which closely eclipses the beta- and delta-meso axis of the porphyrin ring. A long range hydrogen bonding network is present, connecting the iron-bound water ligand to the solvent water molecule. This enables proton transfer from the solvent to the catalytic site, where the oxygen activation occurs. In comparison to the ferric complex, the proximal and distal helices move closer to the heme plane in the ferrous complex. Together with the kinked distal helix, this movement leaves only the alpha-meso carbon atom accessible to the iron-bound dioxygen. The heme pocket architecture is responsible for stabilization of the ferric hydroperoxo-active intermediate by preventing premature heterolytic O-O bond cleavage. This allows the enzyme to oxygenate selectively at the alpha-meso carbon in HmuO catalysis.  相似文献   

3.
Heme oxygenase (HO) catalyzes physiological heme degradation consisting of three sequential oxidation steps that use dioxygen molecules and reducing equivalents. We determined the crystal structure of rat HO-1 in complex with heme and azide (HO-heme-N(3)(-)) at 1.9-A resolution. The azide, whose terminal nitrogen atom is coordinated to the ferric heme iron, is situated nearly parallel to the heme plane, and its other end is directed toward the alpha-meso position of the heme. Based on resonance Raman spectroscopic analysis of HO-heme bound to dioxygen, this parallel coordination mode suggests that the azide is an analog of dioxygen. The azide is surrounded by residues of the distal F-helix with only the direction to the alpha-meso carbon being open. This indicates that regiospecific oxygenation of the heme is primarily caused by the steric constraint between the dioxygen bound to heme and the F-helix. The azide interacts with Asp-140, Arg-136, and Thr-135 through a hydrogen bond network involving five water molecules on the distal side of the heme. This network, also present in HO-heme, may function in dioxygen activation in the first hydroxylation step. From the orientation of azide in HO-heme-N(3)(-), the dioxygen or hydroperoxide bound to HO-heme, the active oxygen species of the first reaction, is inferred to have a similar orientation suitable for a direct attack on the alpha-meso carbon.  相似文献   

4.
The presence of variable static hemin orientational disorder about the alpha-gamma-meso axis in the substrate complexes of mammalian heme oxygenase, together with the incomplete averaging of a second, dynamic disorder, for each hemin orientation, has led to NMR spectra with severe spectral overlap and loss of key two-dimensional correlations that seriously interfere with structural characterization in solution. We demonstrate that the symmetric substrate, 2,4-dimethyldeuterohemin, yields a single solution species for which the dynamic disorder is sufficiently rapid to allow effective and informative (1)H NMR structural characterization. A much more extensive, effective, and definitive NMR characterization of the cyanide-inhibited, symmetric heme complex of human heme oxygenase shows that the active site structure, with some minor differences, is essentially the same as that for the native protohemin in solution and crystal. A unique distal network that involves particularly strong hydrogen bonds, as well as inter-aromatic contacts, is described that is proposed to stabilize the position of the catalytically critical distal helix Asp-140 carboxylate (Liu, Y., Koenigs Lightning, L., Huang, H., Mo?nne-Loccoz, P., Schuller, D. J., Poulos, T. L., Loehr, T. M., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 34501-34507). The potential role of this network in placing a water molecule to stabilize the hydroperoxy species and as a template for the condensation of the distal helix upon substrate binding are discussed.  相似文献   

5.
The O(2)-avid hemoglobin from the parasitic nematode Ascaris suum exhibits one of the slowest known O(2) off rates. Solution (1)H NMR has been used to investigate the electronic and molecular structural properties of the active site for the cyano-met derivative of the recombinant first domain of this protein. Assignment of the heme, axial His, and majority of the residues in contact with the heme reveals a molecular structure that is the same as reported in the A. suum HbO(2) crystal structure (Yang, J., Kloek, A., Goldberg, D. E., and Mathews, F. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4224-4228) with the exception that the heme in solution is rotated by 180 degrees about the alpha,gamma-meso axis relative to that in the crystal. The observed dipolar shifts, together with the crystal coordinates of HbO(2), provide the orientation of the magnetic axes in the molecular framework. The major magnetic axis, which correlates with the Fe-CN vector, is found oriented approximately 30 degrees away from the heme normal and indicates significant steric tilt because of interaction with Tyr(30)(B10). The three side chain labile protons for the distal residues Tyr(30)(B10) and Gln(64)(E7) were identified, and their relaxation, dipolar shifts, and nuclear Overhauser effects to adjacent residues used to place them in the distal pocket. It is shown that these two distal residues exhibit the same orientations ideal for H bonding to the ligand and to each other, as found in the A. suum HbO(2) crystal. It is concluded that the ligated cyanide participates in the same distal H bonding network as ligated O(2). The combination of the strong steric tilt of the bound cyanide and slow ring reorientation of the Tyr(30)(B10) side chain supports a crowded and constrained distal pocket.  相似文献   

6.
The crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate (biliverdin(Fe)-HO-1), the immediate precursor of the final product, biliverdin, has been determined at a 2.4-A resolution. The electron density in the heme pocket clearly showed that the tetrapyrrole ring of heme is cleaved at the alpha-meso edge. Like the heme bound to HO-1, biliverdin-iron chelate is located between the distal and proximal helices, but its accommodation state seems to be less stable in light of the disordering of the solvent-exposed propionate and vinyl groups. The middle of the distal helix is shifted away from the center of the active site in biliverdin(Fe)-HO-1, increasing the size of the heme pocket. The hydrogen-bonding interaction between Glu-29 and Gln-38, considered to restrain the orientation of the proximal helix in the heme-HO-1 complex, was lost in biliverdin(Fe)-HO-1, leading to relaxation of the helix. Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network. Because of the absence of a distal water ligand, the iron atom is five-coordinated with His-25 and four pyrrole nitrogen atoms. The coordination geometry deviates considerably from a square pyramid, suggesting that the iron may be readily dissociated. We speculate that the opened conformation of the heme pocket facilitates sequential product release, first iron then biliverdin, and that because of biliverdin's increased flexibility, iron release triggers its slow dissociation.  相似文献   

7.
Friedman J  Lad L  Li H  Wilks A  Poulos TL 《Biochemistry》2004,43(18):5239-5245
The Gram-negative bacterium Pseudomonas aeruginosa contains a heme oxygenase (pa-HO) that primarily oxygenates the delta-meso heme carbon [Caignan, G. A., Deshmukh, R., Wilks, A., Zeng, Y., Huang, H. W., Moenne-Loccoz, P., Bunce, R. A., Eastman, M. A., and Rivera, M. (2002) J. Am. Chem. Soc. 124, 14879-14892]. This differs from other previously characterized heme oxygenases, which display regioselectivity for the alpha-meso heme carbon. Here we report the crystal structure of pa-HO at 1.60 A resolution and compare it to the 1.50 A structure of nm-HO from Neisseria meningitidis [Schuller, D. J., Zhu, W., Stojiljkovic, I., Wilks, A., and Poulos, T. L. (2001) Biochemistry 40, 11552-11558]. The crystal structure of pa-HO maintains the same overall fold as other bacterial and mammalian heme oxygenases, including a conserved network of hydrogen-bonded solvent molecules important for dioxygen activation. The novel delta-regioselectivity of heme oxygenation observed by pa-HO is due to the heme being rotated by approximately 100 degrees, which places the delta-meso heme carbon in the same position as the alpha-meso heme carbon in other heme oxygenases. The main interaction in pa-HO that stabilizes the unique heme orientation is a salt bridge between Lys132 and the heme 7-propionate, as well as hydrophobic contacts involving Leu29, Val33, and Phe189 with the heme methyl and vinyl groups.  相似文献   

8.
The solution molecular and electronic structures of the active site in the extremely O2-avid hemoglobin from the trematode Paramphistomum epiclitum have been investigated by 1H NMR on the cyanomet form in order to elucidate the distal hydrogen-bonding to a ligated H-bond acceptor ligand. Comparison of the strengths of dipolar interactions in solution with the alternate crystal structures of methemoglobin establish that the solution structure of wild-type Hb more closely resembles the crystal structure of the recombinant wild-type than the true wild-type met-hemoglobin. The distal Tyr66(E7) is found oriented out of the heme pocket in solution as found in both crystal structures. Analysis of dipolar contacts, dipolar shift and paramagnetic relaxation establishes that the Tyr32(B10) hydrogen proton adopts an orientation that allows it to make a strong H-bond to the bound cyanide. The observation of a significant isotope effect on the heme methyl contact shifts confirms a strong contact between the Tyr32(B10) OH and the ligated cyanide. The quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that the cyanide is tilted approximately 10 degrees from the heme normal so as to avoid van der Waals overlap with the Tyr32(B10) Oeta. The pattern of heme contact shifts with large low-field shifts for 7-CH3 and 18-CH3 is shown to arise not from the 180 degrees rotation about the alpha-gamma-meso axis, but due to the approximately 45 degrees rotation of the axial His imidazole ring, relative to that in mammalian globins.  相似文献   

9.
Site-directed mutagenesis studies have shown that Asp140 in both human and rat heme oxygenase-1 is critical for enzyme activity. Here, we report the D140A mutant crystal structure in the Fe(III) and Fe(II) redox states as well as the Fe(II)-NO complex as a model for the Fe(II)-oxy complex. These structures are compared to the corresponding wild-type structures. The mutant and wild-type structures are very similar, except for the distal heme pocket solvent structure. In the Fe(III) D140A mutant one water molecule takes the place of the missing Asp140 carboxylate side-chain and a second water molecule, novel to the mutant, binds in the distal pocket. Upon reduction to the Fe(II) state, the distal helix running along one face of the heme moves closer to the heme in both the wild-type and mutant structures thus tightening the active site. NO binds to both the wild-type and mutant in a bent conformation that orients the NO O atom toward the alpha-meso heme carbon atom. A network of water molecules provides a H-bonded network to the NO ligand, suggesting a possible proton shuttle pathway required to activate dioxygen for catalysis. In the wild-type structure, Asp140 exhibits two conformations, suggesting a dynamic role for Asp140 in shuttling protons from bulk solvent via the water network to the iron-linked oxy complex. On the basis of these structures, we consider why the D140A mutant is inactive as a heme oxygenase but active as a peroxidase.  相似文献   

10.
S D Emerson  G N La Mar 《Biochemistry》1990,29(6):1556-1566
The experimentally determined paramagnetic dipolar shifts for noncoordinated amino acid side-chain protons in the heme pocket of sperm whale cyanometmyoglobin [Emerson, S. d., & La Mar, G. N. (1990) Biochemistry (preceding paper in this issue]) were used to determine in solution the orientation of the principal axes for the paramagnetic susceptibility tensor relative to the heme iron molecular coordinates. The determination was made by a least-squares search for the unique Euler rotation angles which convert the geometric factors in the molecular (crystal) coordinates to ones that correctly predict each of 41 known dipolar shifts by using the magnetic anisotropies computed previously [Horrocks, W. D., Jr., & Greenberg, E. S. (973) Biochim. Biophys. Acta 322, 38-44]. An excellent fit to experimental shifts was obtained, which also provided predictions that allowed subsequent new assignments to be made. The magnetic axes are oriented so that the z axis is tipped approximately 15 degrees from the heme normal toward the hem delta-meso-H and coincides approximately with the characterized FeCO tilt axis in the isostructural MbCO complex [Kuriyan, J., Wilz, S., Karplus, M., & Petsko, G. A. (1986) J. Mol. Biol. 192, 133-154]. Since the FeCO and FeCN units are isostructural, we propose that the dominant protein constraints that tips the magnetic z axis from the heme normal is the tilt of the FeCN by steric interactions with the distal residues. The rhombic magnetic axes were found to align closely with the projection of the proximal His imidazole plane on the heme, confirming that the His-Fe bonding provides the protein constraints that orients the in-plane anisotrophy. The tipped magnetic z axis is shown to account quantitatively for the previously noted major discrepancy between the hyperfine shift patterns for the bound imidazole side chain in models and protein. Moreover, it is shown that the proximal His ring nolabile proton hyperfine shifts provide direct and exquisitely sensitive indicators of the degree of the z axis tilt that may serve as a valuable probe for characterizing variable steric interactions in the distal pocket of both point mutants and natural genetic variants of myoglobin.  相似文献   

11.
Heme oxygenase oxidatively degrades heme to biliverdin resulting in the release of iron and CO through a process in which the heme participates both as a cofactor and substrate. One of the least understood steps in the heme degradation pathway is the conversion of verdoheme to biliverdin. In order to obtain a better understanding of this step we report the crystal structures of ferrous-verdoheme and, as a mimic for the oxy-verdoheme complex, ferrous-NO verdoheme in a complex with human HO-1 at 2.20 and 2.10 A, respectively. In both structures the verdoheme occupies the same binding location as heme in heme-HO-1, but rather than being ruffled verdoheme in both sets of structures is flat. Both structures are similar to their heme counterparts except for the distal helix and heme pocket solvent structure. In the ferrous-verdoheme structure the distal helix moves closer to the verdoheme, thus tightening the active site. NO binds to verdoheme in a similar bent conformation to that found in heme-HO-1. The bend angle in the verodoheme-NO structure places the terminal NO oxygen 1 A closer to the alpha-meso oxygen of verdoheme compared to the alpha-meso carbon on the heme-NO structure. A network of water molecules, which provide the required protons to activate the iron-oxy complex of heme-HO-1, is absent in both ferrous-verdoheme and the verdoheme-NO structure.  相似文献   

12.
T L Poulos  A J Howard 《Biochemistry》1987,26(25):8165-8174
The crystal structures of metyrapone- and 1-, 2-, and 4-phenylimidazole-inhibited complexes of cytochrome P-450cam have been refined to a nominal resolution of 2.1 A and compared with the 1.63-A camphor-bound structure. With the exception of 2-phenylimidazole, each of the inhibitors forms an N-Fe bond with the heme iron atom while part of the inhibitor sits in the camphor-binding pocket. In the 2-phenylimidazole complex, a water molecule or hydroxide ion coordinates with the heme iron atom while the inhibitor binds in the camphor pocket adjacent to the aqua ligand. Each of the inhibitors forces the central region of helix I that forms part of the O2 binding pocket to move away from the inhibitor, with the exception of 2-phenylimidazole where the helix moves in toward the inhibitor. In addition, the Tyr-96 region, which provides specific contact points with the substrate, is perturbed, although to varying degrees with each inhibitor. These perturbations include large, localized changes in Debye-Waller or temperature factors, indicative of changes in dynamical fluctuations. The largest inhibitor, metyrapone, causes the fewest changes, while 2-phenylimidazole binding causes the largest, especially in helix I. The large 2-phenylimidazole-induced movement of helix I can be rationalized on the basis of the inhibitor imidazole group's hydrogen-bonding requirements.  相似文献   

13.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

14.
A comparative study on the solution structures of bovine microsomal cytochrome b5 (Tb5) and the mutant V45H has been achieved by 1D and 2D 1H-NMR spectroscopy to clarify the differences in the solution conformations between these two proteins. The results reveal that the global folding of the V45H mutant in solution is unchanged, but the subtle changes exist in the orientation of the axial ligand His39, and heme vinyl groups. The side chain of His45 in V45H mutant extends to the outer edge of the heme pocket leaving a cavity at the site originally occupied by the inner methyl group of Val45 residue. In addition, the imidazole ring of axial ligand His39 rotates counterclockwise by approximately 3 degrees around the His-Fe-His axis, and the 4-heme vinyl group turns to the space vacated by the removed side chain due to the mutation. Furthermore, the helix III of the heme pocket undergoes outward displacement, while the linkage between helix II and III is shifted leftward. These observations are not only consistent with the pattern of the pseudocontact shifts of the heme protons, but also well account for the lower stability of V45H mutant against heat and urea.  相似文献   

15.
The complex of Maclura pomifera agglutinin with the T-antigen disaccharide (beta-d-Gal-(1-->3)-alpha-d-GalNAc-(1-->O)-Me) was investigated by NMR spectroscopy in aqueous solution. Intramolecular transferred nuclear Overhauser enhancement (NOE) effects between the monosaccharide moieties were used to derive the ligand conformation in the lectin-bound state. Ligand protons in contact with the protein were identified by saturation transfer difference experiments and intermolecular transferred NOE effects. It is demonstrated that structural differences exist for the ligand-lectin complex in aqueous solution as compared with the previously published crystal structure (Lee, X., Thompson, A., Zhiming, Z., Ton-that, H., Biesterfeldt, J., Ogata, C., Xu, L., Johnston, R. A. Z. , and Young, N. M. (1998) J. Biol. Chem. 273, 6312-6318). In order to accommodate the O-methyl group of the disaccharide, the amino acid side chain of Tyr-122 has to rotate from its position in the crystal. The NMR data are in accord with two conformational families at the beta-(1-->3)glycosidic linkage in the solution complex with interglycosidic angles phi/psi = 45/-65 degrees and -65/-18 degrees. These differ from the bound conformation of the ligand in the crystal (phi/psi = 39/-8 degrees ) and are not highly populated by the ligand in the free state. The reason for the structural differences at the beta-(1-->3)glycosidic linkage are hydrogen bonds that stabilize the relative orientation of the monosaccharide units in the crystal. Our results demonstrate that the crystallization of a protein-carbohydrate complex can interfere with the delicate process of carbohydrate recognition in solution.  相似文献   

16.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

17.
Two-dimensional 1H-NMR methods have been used to assign side-chain resonances for the tryptophan residues and for several amino acids located in the heme pockets of the carbon monoxide complexes of the major monomeric hemoglobins from Glycera dibranchiata. The NMR spectra reveal a high degree of conservation of the heme pocket structure in the different hemoglobins. However some conformational differences are evident and residues at positions B10 and G8 on the distal side of the heme pocket are not conserved. From the present NMR studies it appears that the monomeric G. dibranchiata hemoglobin examined by X-ray crystallography [Padlan, E. A. & Love, W. (1974) J. Biol. Chem. 249, 4067-4078] corresponds to HbC. Except that the orientation of the heme in solution is the reverse of that reported in the crystal structure, there is a close correspondence between the heme pocket structure in the crystal and in solution. The proximal histidine coordination geometry is almost identical in the CO complexes of the three monomeric hemoglobins studied. Distal residues are strongly implicated in determining the observed kinetic differences in ligand binding reactions. In particular, steric crowding of the ligand binding site in hemoglobin A is probably a major factor in the slower kinetics of this component.  相似文献   

18.
We report the crystal structure of heme oxygenase from the pathogenic bacterium Neisseria meningitidis at 1.5 A and compare and contrast it with known structures of heme oxygenase-1 from mammalian sources. Both the bacterial and mammalian enzymes share the same overall fold, with a histidine contributing a ligand to the proximal side of the heme iron and a kinked alpha-helix defining the distal pocket. The distal helix differs noticeably in both sequence and conformation, and the distal pocket of the Neisseria enzyme is substantially smaller than in the mammalian enzyme. Key glycine residues provide the flexibility for the helical kink, allow close contact of the helix backbone with the heme, and may interact directly with heme ligands.  相似文献   

19.
Heme oxygenases from the bacterial pathogens Neisseriae meningitidis (nm-HO) and Pseudomonas aeruginosa (pa-HO) share significant sequence identity (37%). In nm-HO, biliverdin IXalpha is the sole product of the reaction, whereas pa-HO yields predominantly biliverdin IXdelta. We have previously shown by NMR that the in-plane conformation of the heme in pa-HO is significantly different from that of nm-HO as a result of distinct interactions of the heme propionates with the protein scaffold [Caignan, G. A., Deshmukh, R., Wilks, A., Zeng, Y., Huang, H. W., Moenne-Loccoz, P., Bunce, R. A., Eastman, M. A., and Rivera, M. (2002) J. Am. Chem. Soc. 124, 14879-14892]. In the report presented here, we have extended these studies to investigate the role of the distal helix by preparing a chimera of nm-HO (nm-HOch), in which distal helix residues 107-142 of nm-HO have been replaced with the corresponding residues of the delta-regioselective pa-HO (112-147). Electronic absorption spectra, resonance Raman and FTIR spectroscopic studies confirm that the orientation and hydrogen bonding properties of the proximal His ligand are not significantly altered in the chimera relative those of the wild-type proteins. The catalytic turnover of the nm-HOch-heme complex yields almost exclusively alpha-biliverdin and a small but reproducible amount of delta-biliverdin. NMR spectroscopic studies reveal that the altered regioselectivity in the chimeric protein likely stems from a dynamic equilibrium between two alternate in-plane conformations of the heme (in-plane heme disorder). Replacement of K16 with Ala and Met31 with Lys in the chimeric protein in an effort to tune key polypeptide-heme propionate contacts largely stabilizes the in-plane conformer conducive to delta-meso hydroxylation.  相似文献   

20.
Yin G  Li Y  Li J  Li J  Du W  Wei Q  Fang W 《Biophysical chemistry》2008,136(2-3):115-123
Solution (1)H NMR spectroscopy has been carried out to investigate the molecular and electronic structures of the active site in H64Q/V68F double mutant mouse neuroglobin in the cyanomet form. Two heme orientations resulting from a 180 degrees rotation about the alpha-gamma-meso axis were observed with a population ratio about 1:1, and the clearly distinguished B isomer was used to perform the study. Based on the analysis of the dipolar shifts and paramagnetic relaxation constants, the distal Gln(64)(E7) side chain is obtained to adopt an orientation that may produce hydrogen bond between the N(epsilon)H(1) and the Fe-bound cyanide. The side chain of Phe(68)(E11) is oriented out of the heme pocket just like that in triple mutant of cyanide complex of sperm whale myoglobin. A 15 degrees rotation of the imidazole ring in axial His(96) is observed, which is close to the varphi angle determined from the crystal structure of NgbCO. The quantitative determinations of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that cyanide is tilted by 8 degrees from the heme normal which allows for contact to the Gln(64)(E7) N(epsilon)H(1). The E7 and E11 residues appear to control the direction and the extent of tilt of the bound ligand. Furthermore, the tilt of the ligand has no obvious influence on the heme heterogeneity of cyanide ligation for isomer A/B of the wild type and mutant protein, indicating that factors other than steric effects, such as polarity of heme pocket, impacts on ligand binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号