首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In foraging and homing, desert ants of the genus Cataglyphis employ two different systems of navigation: a vector-based or dead-reckoning mechanism, depending on angles steered and distances travelled, and a landmark-based piloting mechanism. In these systems the ants use either celestial or terrestrial visual information, respectively. In behavioural experiments we investigated how long these types of information are preserved in the ant's memory, i.e. how long the ants are able to orient properly in either way. To answer this question, ants were tested in specific dead-reckoning and piloting situations, whereby the two vector components, direction and distance, were examined separately. The ability to follow a particular vector course vanishes rapidly. Information about a given homing direction is lost from the 6th day on (the time constant of the exponential memory decay function is τ = 4.5 days). The homing distances show a significantly higher dispersion from the 4th day on (τ = 2.5 days). Having learned a constellation of landmarks positioned at the corners of an equidistant triangle all ants were oriented properly after 10 days in captivity, and 64% of the ants exhibited extremely precise orientation performances even when tested after 20 days. Thus, the memory decay functions have about the same short time-course for information on distance and direction, i.e. information used for dead-reckoning. In contrast, landmark-based information used in pinpointing the nest entrance is stored over the entire lifetime of a Cataglyphis forager. Accepted: 18 January 1997  相似文献   

2.
The desert ant Cataglyphis fortis is equipped with sophisticated navigational skills for returning to its nest after foraging. The ant's primary means for long-distance navigation is path integration, which provides a continuous readout of the ant's approximate distance and direction from the nest. The nest is pinpointed with the aid of visual and olfactory landmarks. Similar landmark cues help ants locate familiar food sites. Ants on their outward trip will position themselves so that they can move upwind using odor cues to find food. Here we show that homing ants also move upwind along nest-derived odor plumes to approach their nest. The ants only respond to odor plumes if the state of their path integrator tells them that they are near the nest. This influence of path integration is important because we could experimentally provoke ants to follow odor plumes from a foreign, conspecific nest and enter that nest. We identified CO(2) as one nest-plume component that can by itself induce plume following in homing ants. Taken together, the results suggest that path-integration information enables ants to avoid entering the wrong nest, where they would inevitably be killed by resident ants.  相似文献   

3.
Desert ants Cataglyphis fortis have been shown to be able to employ two mechanisms of distance estimation: exploiting both optic flow and proprioceptive information. This study aims at understanding possible interactions between the two possibly redundant mechanisms of distance estimation. We ask whether in Cataglyphis the obviously minor contribution of optic flow would increase or even take over completely if the ants were deprived of reliable proprioceptive information. In various experimental paradigms ants were subjected to passive horizontal displacements during which they perceived optic flow, but were prohibited from active locomotion. The results show that in desert ants active locomotion is essential for providing the ants’ odometer and hence its path integrator with the necessary information.  相似文献   

4.
Desert ants of the genus Cataglyphis perform large-scale foraging excursions from which they return to their nest by path integration. They do so by integrating courses steered and the distances travelled into a continually updated home vector. While it is known that the angular orientation is based on skylight cues, it still is largely enigmatic how the ants measure distances travelled. We extended the ants' task into the third dimension by training them to walk within an array of uphill and downhill channels, and later testing them on flat terrain, or vice versa. In these tests the ants indicated homing distances that did not correspond to the distances actually travelled, but to the ground distances; that is, to the sum of the horizontal projections of the uphill and downhill segments of the ants' paths. These results suggest a much more sophisticated mechanism of distance estimation than hitherto thought. The ants must be able to measure the slopes of undulating terrain and to integrate this information into their "odometer" for the distance estimation process.  相似文献   

5.
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky’s polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant’s compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.  相似文献   

6.
Desert ants of the genus Cataglyphis rely on path integration vectors to return to the nest (inbound runs) and back to frequently visited feeding sites (outbound runs). If disturbed, e.g., experimentally displaced on their inbound runs, they continue to run off their home-bound vector, but if disturbed in the same way on their outbound runs, they do not continue their feeder-based vector, but immediately switch on the home-bound state of their path integration vector and return to the nest. Here we show that familiar landmarks encountered by the ants during their run towards the feeder can change the ants’ motivational state insofar that the ants even if disturbed continue to run in the nest-to-feeder direction rather than reverse their courses, as they do in landmark-free situations. Hence, landmark cues can cause the ants to change their motivational state from homing to foraging.  相似文献   

7.
Path integration is an ant's lifeline on any of its foraging journeys. It results in a homebound global vector that continually informs the animal about its position relative to its starting point. Here, we use a particular (repeated training and displacement) paradigm, in which homebound ants are made to follow a familiar landmark route repeatedly from the feeder to the nest, even after they have arrived at the nest. The results show that during the repeated landmark-guided home runs the ant's path integrator runs continually, so that the current state of the homebound vector increasingly exceeds the reference state. The dramatic result is that the homing ants run away from home. This finding implies that the ants do not rely on cartographic information about the locations of nest and feeder (e.g. that the nest is always south of the feeder), but just behave according to what the state of their egocentric path integrator tells them.  相似文献   

8.
Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects’ abilities and better understanding their flight.  相似文献   

9.
Desert navigators en miniature Cataglyphis, a strictly diurnal, heat‐tolerant, high‐speed desert ant, employs a path integrator as its main navigational means. By continually measuring directions steered and distances covered the path integrator computes a navigation vector, which can lead the ant directly back to its central place, the nest, and to any point which it has visited before. The path integration vector receives compass information from the pattern of polarized light in the sky (via a set of specialized photoreceptors at the dorsal rim of the eye), and derives information about travel distance from a stride integrator (pedometer) and an optic‐flow meter exploiting self‐induced image motion across the ventral retina. The path integrator is fully functional already at the beginning of the ant's foraging life. Later it keeps running whenever the ant is on a foraging excursion irrespective of whether other navigational tools are at work as well. Finally it provides a scaffold for landmark learning. View‐based landmark information is acquired by taking panoramic “snapshots” at certain places and routes. By comparing this memorized visual information with the actual one received during later journeys the ants are able to return to familiar places and to follow familiar routes even without the aid of the path integrator. The ant's navigational performances known to date can be simulated by designing a decentralized network, in which the individual tools are interconnected in flexible and context dependent ways.  相似文献   

10.
Neural mechanisms in insect navigation: polarization compass and odometer   总被引:5,自引:0,他引:5  
Insect navigation relies on path integration, a procedure by which information about compass bearings pursued and distances travelled are combined to calculate position. Three neural levels of the polarization compass, which uses the polarization of skylight as a reference, have been analyzed in orthopteran insects. A group of dorsally directed, highly specialized ommatidia serve as polarization sensors. Polarization-opponent neurons in the optic lobe condition the polarization signal by removing unreliable and irrelevant components of the celestial stimulus. Neurons found in the central complex of the brain possibly represent elements of the compass output. The odometer for measuring travelling distances in honeybees relies on optic flow experienced during flight, whereas desert ants most probably use proprioreceptive cues.  相似文献   

11.
Ants are known to use the terrestrial visual panorama in navigation. Recent evidence has accumulated for the use of the currently perceived visual panorama to determine a direction to head in. The pattern of the height of the terrestrial surround, the skyline, is one key cue for the Central Australian red honey ant Melophorus bagoti in determining a direction of travel. But ants might also possess some mechanism to match the skyline heights encountered during training, which functions to steer away from regions whose skyline is too high and towards regions whose skyline is too low. We made an initial test of this hypothesis by training ants to visit a feeder centred between two experimentally constructed walls of black cloth. Trained ants were then tested for their initial homing direction with the walls retaining their heights as encountered in training (controls), with one of the walls lowered or raised in height, or with one wall lowered and the opposite wall raised. Wall‐height manipulations deflected the initial headings of ants towards the lower wall, with combined wall lowering and wall raising changing the initial headings by ~30° when compared with controls. The results suggest that the ants combined the dictates of the panorama in determining the best direction of travel (a heading towards the nest) with some attractor mechanism that functions to establish the skyline heights of training conditions (a heading towards the lower wall).  相似文献   

12.
Honeybees returning from foraging trips were video-filmed while they walked through a narrow transparent gangway to reach the hive entrance. On their way they were presented with black-and-white gratings viewed underneath as well as to both sides of the gangway. Bees could exit the gangway through one of two or three side exits installed at different distances from the gangway entrance. In one set of experiments, the substrate on which the bees walked was moved either in the bee's direction or against it. In another set of experiments, the substrate was stationary, but the pattern was moved in one or the other direction. The bee's walking speed (WS) was evaluated from the video tapes. When the substrate moved against, or the pattern in the bee's direction, in either case decreasing the speed of pattern flow (PFS), the bees increased WS, and, at the same time, they preferred the more distant exit. When the substrate moved in, or the pattern against the bee's direction, thus increasing PFS, WS decreased and the bees preferred the nearer exit. These results suggest that the speed of optic flow controls the speed of locomotion and might therefore also serve for assessing the distance travelled.Abbreviations PFS pattern-flow speed - WS walking speed Dedicated to Hans-Jochen Autrum, editor emeritus, for help in giving birth to this and many other papers over very many years, often with criticism but nevertheless with encouragement and sympathy.  相似文献   

13.
Although it has been shown that visual cues play an essential role in navigation by the garden ant Lasius niger, no previous studies have addressed the way in which information from local visual cues is acquired and utilized in navigation. We found that in the absence of pheromone trails, ants whose homing motivation was triggered by feeding returned to the nest following local visual cues. In our experiments, the ants travelled through a maze to reach a feeder. They explored the maze and sometimes became trapped in its dead ends. We found that the ants more effectively used visual cues during their homeward journey if they experienced a dead end during their outward journey. This result suggested that the ants used the information acquired from visual cues during the outward journey to avoid a dead end on their return journey.  相似文献   

14.
Foragers of a stingless bee, Melipona seminigra, are able to use the optic flow experienced en route to estimate flight distance. After training the bees to collect food inside a flight tunnel with black-and-white stripes covering the side walls and the floor, their search behavior was observed in tunnels lacking a reward. Like honeybees, the bees accurately estimated the distance to the previously offered food source as seen from the sections of the tunnel where they turned around in search of the food. Changing the visual flow by decreasing the width of the flight tunnel resulted in the underestimation of the distance flown. The removal of image motion cues either in the ventral or lateral field of view reduced the bees' ability to gauge distances. When the feeder inside the tunnel was displaced together with the bees feeding on it while preventing the bee from seeing any image motion during the displacement the bees experienced different distances on their way to the food source and during their return to the nest. In the subsequent test the bees searched for the food predominantly at the distance associated with their return flight.  相似文献   

15.
We investigated how the formicine ant Gigantiops destructor can use vector information to navigate within the cluttered environment of the rain forest. Displaced foragers use skylight information to move in the theoretical feeder-to-nest direction, whether they are prevented from updating their path-integrator during foraging or captured at the departure from their nest, i.e. with a current accumulator state very close to zero. Only ants that have collected food are able to download a long-term stored reference vector pointing in the nest direction, irrespective of the current accumulator state of their path-integrator stored in a working memory and independent of familiar landmarks. Depending on the release sites, ants that became lost at a maximum distance of 50 cm could still hit and recognize their familiar route, or they engaged in a systematic search for it centered on the release sites. In contrast to Cataglyphis desert ants, Gigantiops ants do not rely primarily on the current accumulator state of their egocentric path integrator. Such a long-term vector-based navigation primed by food capture is well adapted for a tropical ant foraging during periods spanning several hours. This could prevent the numerous cumulative errors in the evaluation of the angles steered that might result from a continuously running path-integrator operating during complex foraging patterns performed at ground or arboreal levels and during passive displacement in response to heavy rain.  相似文献   

16.
We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.  相似文献   

17.
Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell''s receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow.  相似文献   

18.
The main navigational mechanism used by foraging desert ants of the genus Cataglyphis is path integration (dead reckoning). Any such egocentric system of navigation is prone to cumulative navigational errors. Hence, while homing Cataglyphis might have reset its path integration system and yet not arrived at the start of its foraging excursion, the nest entrance. Then it resorts to piloting or performs a systematic search for the nest. The search pattern consists of a system of loops of ever increasing size centred about the origin, i.e. the start of the search. Here we show that underlying the system of loops is a spiral search programme that gets transformed into the observed pattern of loops by the ant's idiosyncratic path-integration algorithm. The ant starts to follow a spiral course, then breaks off this course and walks towards the centre, i.e. to what its path-integration system has computed to be the origin of the search. This reset episode is followed by another spiral course, which is terminated by the next reset, and so forth. After each reset, the spiral gets wider, so that the whole pattern expands. Futhermore, every now and then the spiral might change its sign. Computer simulations based on these simple rules lead to search patterns of the kind actually recorded in Cataglyphis ants. These patterns ensure that those parts of the area in which the target (nest entrance) is most likely to be located are searched most heavily; in other words: the search density profile is adapted to the probability density function of the target.  相似文献   

19.
The female subsocial shield bug, Parastrachia japonensis, provisions its nymphs by foraging on the ground in the forest during the Japanese rainy season, and the bug uses homing navigation to drag a drupe back to its burrow by the shortest route during the day. To study whether or not this bug performs this provisioning behaviour under different photic conditions, we observed the homing behaviour and homing direction of bugs in the field around the clock and/or under various weather conditions. The bugs foraged the whole day during the busiest provisioning period, and the number of walking bugs was not affected by the different weather conditions. Such navigational behaviour, regardless of the time of the day and the weather conditions, is rare in insect navigation. To test whether the bug uses visual cues, we covered the compound eyes and ocelli with opaque or clear paint just before homing began. During the day and at night, and in all weather conditions, the homing direction of blind bugs, but not those with clear-painted eyes was disoriented, indicating that this species uses visual cues dominantly under all photic conditions.  相似文献   

20.
Forager honey bees communicate the distance of food sources to nest mates through waggle dances, but how do bees measure these distances? Recent work suggests that bees measure distance flown in terms of the extent of image motion (integrated optic flow) that is experienced during flight. However, it is known that optic flow also regulates the speed of flight. Therefore, the duration of the flight to a destination is likely to co-vary with the optic flow that is experienced en route. This makes it difficult to tease apart the potential roles of flight duration and optic flow as cues in estimating distance flown. Here we examine whether flight duration alone can serve as an indicator of distance. We trained bees to visit feeders at two sites located in optically different environments, but positioned such that the flight durations to the two sites were similar. The distance estimates for the two sites, as reported in the waggle dance, were compared. We found that dances differed significantly between the two sites, even though flight times were similar. Flight time perse was a poor predictor of waggle dance behaviour. We conclude that foraging bees do not simply signal flight time as their measure of distance in the waggle dance; the environment through which they fly plays a dominant role. Received 11 April 2005; revised 16 May 2005; accepted 3 June 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号