首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
R V Pierre 《Blood cells》1980,6(3):471-482
Evaluation of a prototype Technicon Autoslide, which automatically prepares, fixes, stains, dries labels, and "coverslips" blood films, attached to a Technicon Hemalog D-90 revealed that the instrument prepares high-quality wedge blood smears with uniform distribution of leukocytes, excellent red blood cell and platelet morphology, and adequate staining of normal types of leukocytes. The fixation-staining characteristics did not enable reliable identification of some immature cell types. An additional 200 microliters of blood samples is requred above that required for the Hemalog D-90 in order to prepare a smear. The throughput time of the instrument, from sample aspirate to completion of the blood smear, is 14 min. One sample is completed every 45s. The final glass-slide specimen contains the blood smear sample and its identification and date, embedded in acrylic plastic, which also serves as a coverslip. The instrument can be operated by the D-90 operator with negligible additional effort. The approximate cost of each sample was 8.25 cents. The Autoslide in combination with the Hemalog D-90 should reduce technician time required to prepare, stain, and label blood smears. Its use should reduce the frequency of sample misidentification and provide more uniform quality to slide preparation and staining than is available by current manual techniques. Preliminary studies suggest that Autoslide smears are suitable for use on an image-processing type of automated differential system, and this therefore makes their use possible in a tiered screening system for detection of platelet or red cell abnormalities not recognized by the high-volume cell-counting instruments.  相似文献   

3.
A leukocyte classification algorithm suitable for automated differential counting has been developed for blood smears stained with a new three-component cytochemical stain which has relatively narrow absorption bands centered at 460, 540 and 640 nm, respectively. The classification procedure is the result of a pattern recognition experiment using a sample of 223 leukocytes distributed evenly over the five normal cell types. The basic data for each cell were three digital microscopic images obtained with narrow band illumination at the above central wavelengths using a TV-digitizer system interfaced to a PDP-15 computer. The classification algorithm involves a sequential decision procedure utilizing five pattern features computed from the intensity histograms of the green and blue digital images. Thus the number of arithmetic operations and the number of computer memory words necessary to perform the classification into one of the five normal white blood cell types are both proportional to n where n is the number of gray levels into which the intensity scale is divided. In this experiment, n equals 256. Comparison of our results with work of others on smears prepared with Romanowski-type stains indicates that such narrow-band, spectrally well separated cytochemical multiple stains can permit the use of algorithms which are approximately ten times faster.  相似文献   

4.
The fluorescent dye 3,3'-dimethyloxacarbocyanine (DiOC1[3]) is taken up by all cells in mammalian blood which then fluoresce as follows: mature erythrocytes less than immature erythrocytes congruent to platelets less than leukocytes. A continuous fluorescence distribution can be generated for the red blood cells by flow cytometry and deconvolved into two arbitrary populations, mature and immature erythrocytes (mRBC and imRBC). This analysis mimics the established method of counting imRBC stained with the supravital dyes, new methylene blue, brilliant cresyl blue (BCB), and acridine orange (AO). However, the population of imRBC as quantified by DiOC1[3] fluorescence is a subset of reticulocytes (reticulocytes as determined by BCB assay). The advantages and disadvantages of using DiOC1[3], AO, or pyronine Y as reticulocyte stains are discussed.  相似文献   

5.
Fornas O  Domingo JC  Marin P  Petriz J 《Cytometry》2002,50(6):305-312
Nucleated red blood cells (NRBCs) are involved in normal physiologic processes, as well as in several malignancies. They are usually counted manually under the microscope. However, blood sample manipulation may be a source of variability and manual counting is imprecise, time-consuming, and subjective. To improve identification of CD45-negative cells, we used a flow cytometry technique that avoids the addition of lysing reagents and stains viable cell nuclei. We applied this method for counting and isolating NRBC subpopulations in whole blood samples, using DNA/RNA viable staining to discriminate nonnucleated erythroid cells and debris. NRBC counts gave 197.95 cells per mm(3) in mobilized peripheral blood samples (1.00%, n = 20), 3897.59 cells per mm(3) in leukapheresis products (3.08%, n = 20), and 765.21 cells per mm(3) in cord blood samples (6.09%, n = 20). Normal bone marrow counts were 5449.42 cells per mm(3) (11.76%, n = 20). Scatter profiles showed three distinct populations, from early to late-stage erythroblasts, consisting of erythroblasts, orthochromatic erythroblasts, and ejected nuclei, as confirmed by Wright-Giemsa staining. In addition, flow cytometry immunophenotyping showed that glycophorin A was expressed dimly on NRBCs during maturation. These findings point to the feasibility of live NRBCs studies, which offer great potential for a wide range of disciplines.  相似文献   

6.
A Selective Stain for Mitotic Figures, Particularly in the Developing Brain   总被引:1,自引:0,他引:1  
A selective stain for mitotic figures is valuable where autoradiographic counting is not required, especially in the developing brain. Most work in this field has been based on conventional nuclear stains which do not differentiate mitotic figures from resting cells by color. Hematoxylin, Feulgen, gallocyanin and Nissl methods have been used particularly. The method described uses a modified Bouin fixative, followed by hydrolysis in 1 N HCl. Mitotic figures are selectively stained using crystal violet, with nuclear fast red as the counterstain for resting cells. The method has been tested using material from postnatal and fetal sheep, guinea pig and rat. Using paraffin mounted serial sections it is applicable to all organs. The method was very successful on developing rat brain, particularly for detail and quantitative estimation in the early stages of prenatal development, which was of primary interest. Nucleated cells of the erythrocytic series, keratin and what appear to be mast cells were found to stain. When nuclear counting or cell recognition were required these did not cause any difficulty, except in prenatal liver. The highly selective method presented stains mitotic figures, in all tissue tested, an intense blue against a background of red resting cells.  相似文献   

7.
A selective stain for mitotic figures is valuable where autoradiographic counting is not required, especially in the developing brain. Most work in this field has been based on conventional nuclear stains which do not differentiate mitotic figures from resting cells by color. Hematoxylin, Feulgen, gallocyanin and Nissl methods have been used particularly. The method described uses a modified Bouin fixative, followed by hydrolysis in 1 N HCl. Mitotic figures are selectively stained using crystal violet, with nuclear fast red as the counterstain for resting cells. The method has been tested using material from postnatal and fetal sheep, guinea pig and rat. Using paraffin mounted serial sections it is applicable to all organs. The method was very successful on developing rat brain, particularly for detail and quantitative estimation in the early stages of prenatal development, which was of primary interest. Nucleated cells of the erythrocytic series, keratin and what appear to be mast cells were found to stain. When nuclear counting or cell recognition were required these did not cause any difficulty, except in prenatal liver. The highly selective method presented stains mitotic figures, in all tissue tested, an intense blue against a background of red resting cells.  相似文献   

8.
Summary Many research efforts require the accurate determination of cell density in vitro. However, physical cell counting is inaccurate, time-intensive and requires removal of the cells from their growth environment, thereby introducing a host of potential artifacts. The current studies document a very simple method of determining cell density in microtiter wells via DNA-enhanced fluorescence. Fixed cells are stained with the A-T intercalating DNA stains DAPI or Hoechst 33342 and then fluorescence is quantified in a plate fluorometer. Fluorescence is shown to be linearly related to cell density as determined by two physical counting methods. The validity of the method is established in determining serum-stimulated growth of smooth muscle cells and in mitogen-induced growth of endothelial cells. The fixed cells can be stored for prolonged periods, thus allowing time-course proliferation assays without interassay variations. The fixed cells are also suitable for determinations of antigens of interest by ELISA. This method is potentially valuable in many in vitro systems where the quantification of cell density and proliferation is necessary. This work supported in part by NIH Cardiovascular Training Grant HL07423 and a grant from the American Federation for Aging Research to T. M. and HL35724 to B. W. EDITOR’S STATEMENT The technique described in this paper represents an approach to quantifying cell density in adherent monolayers of cultured cells in microtiter wells that is rapid and simple and does not require radioisotopes or removal of cells.  相似文献   

9.
The fluorescence activated cell sorter (FACS) was used for measuring the uptake of the fluorescent fatty acid derivative 12-(1-pyrene) dodecanoic acid (P12) by human peripheral blood cells. The results indicate that blood cells differ widely in their ability to take up P12, with polymorphonuclear cells showing the greatest uptake, followed by lymphocytes, platelets, and RBCs. These differences in P12 uptake provide a potential additional parameter for differential cell counting. Using the ability of the FACS to "gate out" nonrelevant cells, it was possible to measure the rate of P12 uptake by each respective cell type even when admixed with other cells. Thus elaborate physical separation procedures could be avoided, and contaminating cells did not influence the results. Differences in P12 uptake were also utilized to separate blood cells into pure subpopulations of specific cell types.  相似文献   

10.
New Stains for Blood and Bone Marrow Cells   总被引:2,自引:0,他引:2  
Traditionally, blood and bone marrow cells have been identified based on their characteristic shapes and colors when stained with one of several panoptic stains including Wright's or Giemsa's. As questions arose regarding the origin of normal and leukemic cells, cytochemical stains were developed. These stains help identify cells on the basis of a distinctive metabolite or enzyme. As part of an ongoing tradition in which textile dyes are used for biological staining, several new stains have been applied to hematologic staining. These include C.I. basic blue 41, basic blue 141, basic blue 93, and an assymetrical polymethine dye. As additional cell-selective stains are developed, we can anticipate further improvements in our ability to identify normal and malignant hematopoietic cells.  相似文献   

11.
L Kass 《Stain technology》1990,65(5):211-230
Traditionally, blood and bone marrow cells have been identified based on their characteristic shapes and colors when stained with one of several panoptic stains including Wright's or Giemsa's. As questions arose regarding the origin of normal and leukemic cells, cytochemical stains were developed. These stains help identify cells on the basis of a distinctive metabolite or enzyme. As part of an ongoing tradition in which textile dyes are used for biological staining, several new stains have been applied to hematologic staining. These include C.I. basic blue 41, basic blue 141, basic blue 93, and an asymmetrical polymethine dye. As additional cell-selective stains are developed, we can anticipate further improvements in our ability to identify normal and malignant hematopoietic cells.  相似文献   

12.
The availability of CO2 ice makes it practical to cut large blocks of cerebral tissue by the freezing method. If the tissue is first treated with 20-30% ethyl alcohol for sufficient time to secure uniform penetration of the alcohol (about 24 hours), formation of hard ice crystals can be controlled and serial sections 25-100 μ thick can be cut with negligible loss. The alcohol can be added to the fixative used for perfusion, or it can be added at any time later in the firing process, or after fixation is completed. The sections are cemented to the slide and groups of slides are manipulated thru staining processes in glass trays. Ordinary cell and fiber stains give satisfactory results. The method is particularly useful for certain neurophysiological purposes such as defining the location of electrode tracks and lesions and certain types of retrogrades. The Prussian blue test for electrolytically deposited iron can be conveniently applied in conjunction with other stains, to determine the point at which a given action potential response was observed, if steel electrodes are used.  相似文献   

13.
Dot-blot hybridization: quantitative analysis with direct beta counting.   总被引:3,自引:0,他引:3  
The suitability of using direct beta counting (DBC) for quantitating radioactivity of the probe:target complex in dot-blot hybridization was evaluated using a Packard Matrix 96. A comparison of blots analyzed using autoradiography followed by densitometry scanning (film/densitometry) with those analyzed using direct beta counting revealed similar data trends with the two methods. However, direct beta counting quantitated the amount of radioactivity in the dot blots directly (without film exposure or additional sample preparation), which significantly reduced the time required to obtain results. Blots analyzed first with direct beta counting and then liquid scintillation counting exhibited similar data trends with both methods. Despite a decreased counting efficiency, analysis with direct beta counting has the following advantages compared with liquid scintillation counting: 1) no additional sample preparation is required (no vials or cocktail are used), 2) no sample destruction occurs due to analysis and 3) quantitative results are obtained more rapidly (since the radioactivity for all 96 samples in a dot blot is simultaneously determined in real time). Analysis with direct beta counting was also shown not to interfere with the successful reprobing of stripped dot blots with either unique sequence or total genomic probes. Overall, direct beta counting provides quick, quantitative results for dot blots while saving considerable time and effort.  相似文献   

14.
Raman micro-spectroscopy is a laser-based technique which enables rapid and non-invasive biochemical analysis of cells and tissues without the need for labels, markers or stains. Previous characterization of the mammalian cell cycle using Raman micro-spectroscopy involved the analysis of suspensions of viable cells and individual fixed and/or dried cells. Cell suspensions do not provide cell-specific information, and fixing/drying can introduce artefacts which distort Raman spectra, potentially obscuring both qualitative and quantitative analytical results. In this article, we present Raman spectral characterization of biochemical changes related to cell cycle dynamics within single living cells in vitro. Raman spectra of human osteosarcoma cells synchronized in G(0)/G(1), S, and G(2)/M phases of the cell cycle were obtained and multivariate statistics applied to analyze the changes in cell spectra as a function of cell cycle phase. Principal components analysis identified spectral differences between cells in different phases, indicating a decrease in relative cellular lipid contribution to Raman spectral signatures from G(0)/G(1) to G(2)/M, with a concurrent relative increase in signal from nucleic acids and proteins. Supervised linear discriminant analysis of spectra was used to classify cells according to cell cycle phase, and exhibited 97% discrimination between G(0)/G(1)-phase cells and G(2)/M-phase cells. The non-invasive analysis of live cell cycle dynamics with Raman micro-spectroscopy demonstrates the potential of this approach to monitoring biochemical cellular reactions and processes in live cells in the absence of fixatives or labels.  相似文献   

15.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

16.
Receptors on natural killer (NK) cells are classified as C-type lectins or as Ig-like molecules, and many of them are encoded by two genomic clusters designated natural killer gene complex (NKC) and leukocyte receptor complex, respectively. Here, we describe the analysis of an NKC-encoded chicken C-type lectin, previously annotated as homologue to CD94 and NKG2 and thus designated chicken CD94/NKG2. To further elucidate its potential function on NK cells, we produced a specific mab by immunizing with stably transfected HEK293 cells expressing this lectin. Staining of various chicken tissues revealed minimal reactivity with bursal, or thymus cells. In peripheral blood mononuclear cell and spleen, however, the mab reacted with virtually all thrombocytes, whereas most NK cells in organs such as embryonic spleen, lung and intestine were found to be negative. These findings indicate that the gene may not resemble CD94/NKG2, but rather a CLEC-2 homologue, a claim further supported by sequence features such as an additional extracellular cysteine residue and the presence of a cytoplasmic motif known as a hem immunoreceptor tyrosine-based activation motif, found in C-type lectins such as Dectin-1, CLEC-2, but not CD94/NKG2. The biochemical analyses demonstrated that CLEC-2 is present on the cell surface as heavily glycosylated homodimer, which upon mab crosslinking induced thrombocyte activation, as measured by CD107 expression. These analyses reveal that the chicken NKC may not encode NK cell receptor genes, in particular not CD94 or NKG2 genes, and identifies a chicken CLEC-2 homologue.  相似文献   

17.
The need for rapid histological feedback on neural tissue is ever present. Although there are several stains which can be readily used for staining either cell bodies or fiber tracts, adequate contrasting stains which are both rapid and easy to apply are not generally available. In 1936 Chang presented a technique for whole brains utilizing the metachromatic properties of thionin. Unfortunately this procedure was very time consuming. For the last several years we have worked with several variations of this stain and have found that thionin can be reliably used as a polychrome stain for sections of neural tissue obtained from a freezing microtome.  相似文献   

18.
Recent advances in automated cell counters enable us to count cells more easily with consistency. However, the wide use of the traditional vital dye trypan blue (TB) raises environmental and health concerns due to its potential teratogenic effects. To avoid this chemical hazard, it is of importance to introduce an alternative non-hazardous vital dye that is compatible with automated cell counters. Erythrosin B (EB) is a vital dye that is impermeable to biological membranes and is used as a food additive. Similarly to TB, EB stains only nonviable cells with disintegrated membranes. However, EB is less popular than TB and is seldom used with automated cell counters. We found that cell counting accuracy with EB was comparable to that with TB. EB was found to be an effective dye for accurate counting of cells with different viabilities across three different automated cell counters. In contrast to TB, EB was less toxic to cultured HL-60 cells during the cell counting process. These results indicate that replacing TB with EB for use with automated cell counters will significantly reduce the hazardous risk while producing comparable results.  相似文献   

19.
20.
Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号