首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino-terminal hypervariable region (HVR) of streptococcal M protein is required for the ability of this virulence factor to confer phagocytosis resistance. The function of the HVR has remained unknown, but the finding that many HVRs with extremely divergent sequences bind the human complement regulator C4b-binding protein (C4BP) has suggested that this ligand may play a role in phagocytosis resistance. We used the M22 system to study the function of bound C4BP and provide several lines of evidence that C4BP indeed contributes to phagocytosis resistance. First, the ability of anti-HVR antibodies to cause opsonization correlated with their ability to inhibit binding of C4BP. Secondly, a short deletion in the HVR eliminated C4BP binding and also reduced the ability of M22 to confer phagocytosis resistance. Thirdly, the addition of an excess of pure C4BP to a phagocytosis system almost completely blocked the effect of opsonizing anti-HVR antibodies. Together, our data indicate that binding of C4BP to the HVR of M22 plays an important role in phagocytosis resistance, but other properties of M22 also contribute. This study provides the first molecular insight into the mechanisms by which the HVR of an M protein confers phagocytosis resistance.  相似文献   

2.
Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR) of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP), a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.  相似文献   

3.
Streptococcus pyogenes (group A streptococcus) colonizes skin and throat tissues resulting in a range of benign and serious human diseases. Opsonization and phagocytosis are important defence mechanisms employed by the host to destroy group A streptococci. Antisera against the cell-surface M protein, of which over 150 different types have been identified, are opsonic and contribute to disease protection. In this issue of Molecular Microbiology, Sandin and colleagues have comprehensively analysed the regions of M5 protein that contribute to phagocytosis resistance and opsonization. Human plasma proteins bound to M5 protein B- and C-repeats were shown to block opsonization, an observation that needs to be carefully considered for the development of M protein-derived vaccines. While safe and efficacious human group A streptococcal vaccines are not commercially available, candidate M protein-derived vaccines have shown promise in murine vaccine models and a recent phase 1 human clinical trial.  相似文献   

4.
Identification of antigens that elicit protective immunity is essential for effective vaccine development. We investigated the related surface proteins of group B Streptococcus, Rib and alpha, as potential vaccine candidates. Paradoxically, nonimmunodominant regions proved to be of particular interest as vaccine components. Mouse antibodies elicited by Rib and alpha were directed almost exclusively against the C-terminal repeats and not against the N-terminal regions. However, a fusion protein derived from the nonimmunodominant N-terminal regions of Rib and alpha was much more immunogenic than one derived from the repeats and was immunogenic even without adjuvant. Moreover, antibodies to the N-terminal fusion protein protected against infection and inhibited bacterial invasion of epithelial cells. Similarly, the N-terminal region of Streptococcus pyogenes M22 protein, which is targeted by opsonic antibodies, is nonimmunodominant. These data indicate that nonimmunodominant regions of bacterial antigens could be valuable for vaccine development.  相似文献   

5.
By two independent techniques for separating human opsonic IgG for group A type 6 streptococci into fast- and slow-migrating fractions, it was found that the opsonic activity was localized within the basic charge population. This charge dependence was found to be a characteristic of the IgG isolated from three individuals. When the fast- and slow-migrating IgG fractions were tested for their ability to bind to purified M6 protein, antibodies in both opsonic and nonopsonic populations exhibited binding activity, with the majority being located within the opsonic IgG in two of the three individuals; the third displayed greater binding in the nonopsonic population. The functional difference observed in the antibody populations to this M antigen may be a reflection of the net charge within the area of the antibody binding site, which suggests that the opsonic antibodies need to bind to acidic residues along the outer surface of the fibrillar M protein molecule. F(ab')2 fragments prepared from both human and rabbit type 6 opsonic IgG were still able to bind to the M6 molecule but were unable to mediate opsonization of type 6 streptococci. However, the F(ab')2 fragments had the capacity to enhance or amplify the opsonic activity of low concentrations of opsonic IgG molecules. The results suggest that the M protein molecule may function as an active inhibitor of phagocytosis and that F(ab')2 fragments from opsonic IgG have the capacity to neutralize the "active" determinants on the molecule, thus allowing lower concentrations of IgG with functional Fc receptors to mediate phagocytosis.  相似文献   

6.
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.  相似文献   

7.
The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg)-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR) or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region.  相似文献   

8.
The present studies were undertaken to identify conserved epitopes of group A streptococcal M proteins that evoke cross-protective mucosal immune responses. Two synthetic peptides copying conserved regions of type 5 M protein, designated SM5(235-264)C and SM5(265-291)C, were covalently linked to carrier molecules and their immunogenicity was tested in laboratory animals. Rabbit antisera against both peptides cross-reacted with multiple serotypes of group A streptococci, indicating that the peptides contained broadly cross-reactive, surface exposed M protein epitopes. Serum antipeptide antibodies adsorbed to the surface of heterologous type 24 streptococci passively protected mice against intranasal challenge infections. Mice that were actively immunized intranasally with each synthetic peptide covalently linked to the B subunit of cholera toxin were protected against colonization and death after intranasal challenge infections with type 24 streptococci in the absence of serum opsonic antibodies. These data confirm and extend previous observations that conserved M protein epitopes evoke cross-protective local immunity and may serve as the basis for broadly cross-protective M protein vaccines.  相似文献   

9.
Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion, we analyzed the clinically important HVR-containing M proteins of the human pathogen Streptococcus pyogenes. Antibodies elicited by M proteins were directed almost exclusively against the C-terminal part and not against the N-terminal HVR. Similar results were obtained for mice and humans with invasive S.?pyogenes infection. Nevertheless, only anti-HVR antibodies protected efficiently against infection, as shown by passive immunizations. The HVR fused to an unrelated protein elicited no antibodies, implying that it is inherently weakly immunogenic. These data indicate that the M protein HVR evades antibody attack not only through antigenic variation but also by weak immunogenicity, a paradoxical observation that may apply to other HVR-containing proteins.  相似文献   

10.
We have produced and characterized six mAb directed against group B streptococci (GBS). All antibodies are IgM. We have previously shown that some of these antibodies are highly protective in the treatment of experimental infections in neonatal rats, whereas others do not appear to have any protective efficacy. Using an ELISA, we demonstrate the specificity of both protective and nonprotective antibodies. Two antibodies, binding different epitopes, are directed against antigenic structures present on all GBS; two are specific for type III carbohydrate determinants; one binds to a protein Ag present on all type I and II GBS; and one appears to bind to type Ia GBS only. Quantitative absorption assays provide evidence that the difference between protective antibodies and nonprotective antibodies is the avidity that the antibody demonstrates for the epitope recognized on the surface of the bacteria; 10 to 15 times as much protective antibody binds to GBS as does nonprotective antibody. Direct binding experiments with radiolabeled antibody confirm this conclusion.  相似文献   

11.
A total of 28 monoclonal antibodies have been raised against the (Ca2+ + Mg2+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Epitope mapping, using protein fragments generated by proteolysis, indicates that these antibodies include examples binding to at least four distinct epitopes on the A1 and B tryptic fragments of the ATPase. Competition data also show that the 28 antibodies are directed against at least five spatially distinct regions. Altogether, nine inhibitory antibodies were produced: six of these inhibitory antibodies mapped to the same spatial region, although they appear to bind to two distinct epitopes located within the hinge region and the nucleotide-binding domains of current structural models; one antibody bound to an epitope located within the phosphorylation domain and the stalk-transmembranous region designated M4S4 by Brandl, Green, Korczak & MacLennan [(1986) Cell 44, 597-607]. Two of the inhibitory antibodies recognized assembled epitopes exclusively and could not be mapped. Binding to four of the five identified spatial regions was without effect on activity. These data show that the inhibition of catalytic activity by monoclonal antibodies is achieved only by binding to defined regions of the ATPase and they may therefore provide useful probes of structure-function relationships.  相似文献   

12.
Adenovirus type 5 (Ad5) is one of the most promising vectors for gene therapy applications. Genetic engineering of Ad5 capsid proteins has been employed to redirect vector tropism, to enhance infectivity, or to circumvent preexisting host immunity. As the most abundant capsid protein, hexon modification is particularly attractive. However, genetic modification of hexon often results in failure of rescuing viable viruses. Since hypervariable regions (HVRs) are nonconserved among hexons of different serotypes, we investigated whether the HVRs could be used for genetic modification of hexon by incorporating oligonucleotides encoding six histidine residues (His6) into different HVRs in the Ad5 genome. The modified viruses were successfully rescued, and the yields of viral production were similar to that of unmodified Ad5. A thermostability assay suggested the modified viruses were stable. The His6 epitopes were expressed in all modified hexon proteins as assessed by Western blotting assay, although the intensity of the reactive bands varied. In addition, we examined the binding activity of anti-His tag antibody to the intact virions with the enzyme-linked immunosorbent assay and found the His6 epitopes incorporated in HVR2 and HVR5 could bind to anti-His tag antibody. This suggested the His6 epitopes in HVR2 and HVR5 were exposed on virion surfaces. Finally, we examined the infectivities of the modified Ad vectors. The His6 epitopes did not affect the native infectivity of Ad5 vectors. In addition, the His6 epitopes did not appear to mediate His6-dependent viral infection, as assessed in two His6 artificial receptor systems. Our study provided valuable information for studies involving hexon modification.  相似文献   

13.
14.
The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95.  相似文献   

15.
Monoclonal antibodies have been obtained which react with gonococcal outer membrane protein I. One antibody recognised the majority of strains expressing P.IA and another recognised the majority of strains expressing P.IB. In in vitro tests both antibodies were bactericidal in the presence of complement, opsonic for phagocytosis by human PMN and protected epithelial cells against gonococcal invasion. Thus conserved epitopes on P.I. are potentially effective targets for immunoprophylaxis.  相似文献   

16.

Background

We recently reported induction of broadly neutralizing antibodies (bnAbs) against multiple HIV-1 (human immunodeficiency virus type 1) isolates in rabbits, albeit weak against tier 2 viruses, using a monomeric gp120 derived from an M group consensus sequence (MCON6). To better understand the nature of the neutralizing activity, detailed characterization of immunological properties of the protein was performed. Immunogenic linear epitopes were identified during the course of immunization, and spatial distribution of these epitopes was determined. Subdomain antibody target analyses were done using the gp120 outer domain (gp120-OD) and eOD-GT6, a protein based on a heterologous sequence. In addition, refined epitope mapping analyses were done by competition assays using several nAbs with known epitopes.

Results

Based on linear epitope mapping analyses, the V3 loop was most immunogenic, followed by C1 and C5 regions. The V1/V2 loop was surprisingly non-immunogenic. Many immunogenic epitopes were clustered together even when they were distantly separated in primary sequence, suggesting the presence of immunogenic hotspots on the protein surface. Although substantial antibody responses were directed against the outer domain, only about 0.1% of the antibodies bound eOD-GT6. Albeit weak, antibodies against peptides that corresponded to a part of the bnAb VRC01 binding site were detected. Although gp120-induced antibodies could not block VRC01 binding to eOD-GT6, they were able to inhibit VRC01 binding to both gp120 and trimeric BG505 SOSIP gp140. The immune sera also efficiently competed with CD4-IgG2, as well as nAbs 447-52D, PGT121 and PGT126, in binding to gp120.

Conclusions

The results suggest that some antibodies that bind at or near known bnAb epitopes could be partly responsible for the breadth of neutralizing activity induced by gp120 in our study. Immunization strategies that enhance induction of these antibodies relative to others (e.g. V3 loop), and increase their affinity, could improve protective efficacy of an HIV-1 vaccine.
  相似文献   

17.
The localization of opsonic and tissue-cross-reactive epitopes within the amino terminus of type 1 streptococcal M protein was investigated by using murine mAb raised against synthetic peptides of type 1 M protein. Two mAb (IIIA2 and IIIB8) reacted with epitopes located within amino acid residues 1-12 of type 1 M protein. These antibodies opsonized type 1 streptococci and did not cross-react with human kidney and heart tissue. Another mAb (IC7) reacted with mesangial cells of renal glomeruli and human myocardium. The cross-reactive epitope of mAb IC7 was localized to position 13-19, indicating that it is not the same epitope as the previously described vimentin-cross-reactive epitope at position 23-26 of type 1 M protein. In Western blots of mesangial cell and myocardial proteins, mAb IC7 cross-reacted with a 43-kDa protein. Neither vimentin nor actin inhibited the binding of mAb IC7 to the cross-reactive protein, as determined by Western blot or immunofluorescence inhibition tests. These results provide evidence that type 1 M protein contains at least one autoimmune epitope shared with both human glomeruli and myocardium.  相似文献   

18.
Providing acquired immune protection against infection with bovine viral diarrhea viruses (BVDV) is challenging due to the heterogeneity that exists among BVDV strains and the ability of the virus to infect the fetus and establish persistent infections. Both modified live and killed vaccines have been shown to be efficacious under controlled conditions. Both humoral and cellular immune responses are protective. Following natural infection or vaccination with a modified live vaccine, the majority of the B cell response (as measured by serum antibodies) is directed against the viral proteins E2 and NS2/3, with minor responses against the Erns and E1 proteins. Vaccination with killed vaccines results in serum antibodies directed mainly at the E2 protein. It appears that the major neutralizing epitopes are conformational and are located within the N-terminal half of the E2 protein. While it is thought that the E2 and NS2/3 proteins induce protective T cell responses, these epitopes have not been mapped. Prevention of fetal infections requires T and B cell response levels that approach sterilizing immunity. The heterogeneity that exists among circulating BVDV strains, works against establishing such immunity. Vaccination, while not 100% effective in every individual animal, is effective at the herd level.  相似文献   

19.
Two neutralizing human monoclonal antibodies (HuMAbs) directed against epitopes located near the tip of the V3 loop of human immunodeficiency virus type 1 env protein recognized solubilized gPr160, but not gp120, in radioimmunoprecipitation assays. Efficient immunoprecipitation of solubilized gp120 by these antibodies did occur in the presence of HuMAb 1125H, directed against a conformational epitope overlapping the CD4-binding site, or its F(ab')2 fragment. In contrast to the inability of the anti-V3 antibodies to immunoprecipitate solubilized gp120, these HuMAbs did bind to gp120 in intact virions; this level of binding increased severalfold in the presence of the F(ab')2 fragment of 1125H. These results demonstrate that neutralization epitopes in the V3 loop are sequestered in soluble gp120 but partly exposed in gPr160 and in virion-associated gp120 and that binding of antibodies to the discontinuous CD4-binding site leads to conformational changes that result in the exposure of V3 epitopes in soluble gp120 and their enhanced accessibility in gPr160 and in virion-associated gp120. Enhanced binding of suboptimal concentrations of 1125H to soluble gp120 was also induced by the presence of an anti-V3 HuMAb, indicating the occurrence of reciprocal allosteric interactions between the V3 loop and the CD4-binding site. It is likely that these effects contribute to the synergistic neutralization of human immunodeficiency virus type 1 previously reported for antibodies directed against these two regions.  相似文献   

20.
The hypervariable region 1 (HVR1) of the putative second envelope glycoprotein (gp70) of hepatitis C virus (HCV) contains a sequence-specific immunological B-cell epitope that induces the production of antibodies restricted to the specific viral isolate, and anti-HVR1 antibodies are involved in the genetic drift of HVR1 driven by immunoselection (N. Kato, H. Sekiya, Y. Ootsuyama, T. Nakazawa, M. Hijikata, S. Ohkoshi, and K. Shimotohno, J. Virol. 67:3923-3930, 1993). We further investigated the sequence variability of the HCV genomic region that entirely encodes the envelope proteins (gp35 and gp70); these sequences were derived from virus isolated during the acute and chronic phases of hepatitis in one patient, and we found that HVR1 was a major site for genetic mutations in HCV after the onset of hepatitis. We carried out epitope-mapping experiments using the HVR1 sequence derived from the acute phase of hepatitis and identified two overlapping epitopes which are each composed of 11 amino acids (positions 394 to 404 and 397 to 407). The presence of two epitopes within HVR1 suggested that epitope shift happened during the course of hepatitis. Four of six amino acid substitutions detected in HVR1 were located within the two epitopes. We further examined the reactivities of anti-HVR1 antibodies to the substituted amino acid sequences within the two epitopes. HVR1 variants in both epitopes within the HVR1 escaped from anti-HVR1 antibodies that were preexisting in the patient's serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号