首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
赫氏瘿潜蝇──中国新记录HEXOMYZACECIDOGENA(HERING)(DIPTERA:AGROMYZIDAE)─NEWRECORDFROMCHINA¥WENJinzeng;DONGJingfang(InstituteofPlantProtec...  相似文献   

2.
中国锤角叶蜂科一新记录种ANEWRECORDOFCIMBICIDAE(HYMENOPTERA)TOCHINA¥WANGFengkui(Dept.ofPlantProtection,NorthwesternAgriculturalUniversity,...  相似文献   

3.
评《植物进化生物学》一书李林初(复旦大学生物系上海200433)AREVIEWABOUT“PLANTEVOLUTIONARYBIOLOGY”EDITEDBYCHENGJIAKUANANDYANGJI¥LiLinchu(DepartmentofBiol...  相似文献   

4.
植物生长调节剂防止温州蜜柑异常高温落花落果的效应   总被引:1,自引:0,他引:1  
植物生长调节剂防止温州蜜柑异常高温落花落果的效应童昌华李三玉(浙江农业大学园艺系,杭州310029)EFFECTSOFPLANTGROWTHREGULATORSONFLOWERANDFRUITLETDROPOFWENZHOUMIGANCAUSEDB...  相似文献   

5.
以E.coli和耐辐射微球菌(Deinococcusradiodurans)为试材,研究了N+离子注入对其SOD、CAT和POD活性的影响及其对自由基的清除。结果表明:D.radiodurans经N+离子注入后SOD和CAT酶活高于E.coli的,而POD酶活不仅很低也低于E.coli的;随剂量的增大,两者SOD和CAT酶活均为先增后减,只是其SOD酶活的变化峰值对应剂量分别为6×1015N+/cm2和2×1015N+/cm2,而CAT的则均为4×1015N+/cm2;它们的POD酶活变化则不同,各处理耐辐射微球菌POD酶活保持低而恒定的水平,而大肠杆菌的则是中低剂量较恒定,较高剂量逐渐增大;对1016N+/cm2注入的细胞培养到后对数期,再测其自由基ESR波谱信号强度,发现比同剂量注入、未进行培养的要弱的多。  相似文献   

6.
应用放射性自显影技术检测外源DNA与鸡精子的结合DETECTINGASSOCIATIONOFEXOGENOUSDNAWITHCHICKENSPERMUSINGAUTORADIOGRAPHY关键词鸡,精子,脂质体,DNA与精子的结合KeywordsCh...  相似文献   

7.
烟草Z诱导株的生长及开花姚坤林,孟繁静(北京农大生物学院,北京100094)GROWTHANDFLOWEINGOFTHEREGENERATEDPLANTSINDUCEDBYZEARALENONE¥YaoKun-lin;MengFan-Jing(Col...  相似文献   

8.
淡水红藻一新种——异孢奥杜藻   总被引:2,自引:0,他引:2  
淡水红藻一新种———异孢奥杜藻谢树莲凌元洁(山西大学生命科学系太原030006)ANEWSPECIESOFFRESHWATERREDALGAE———AUDOUINELLAHETEROSPORAFROMCHINAXIEShuLianLINGYuan...  相似文献   

9.
丁波  张亚平 《动物学研究》1998,19(2):171-172
云南6个地区恒河猴蛋白多态及遗传多样性研究*GENETICDIVERSITYAMONGMacacamulataFROMSIXREGIONSINYUNNANPROVINCEBASEDONPROTEINELECTROPHORESIS关键词恒河猴,蛋白电泳...  相似文献   

10.
小鼠2—细胞期经电融合后的早期胚胎发育   总被引:1,自引:0,他引:1  
李光鹏  蔡世勋 《动物学报》1997,43(4):436-437
小鼠2-细胞期经电融合后的早期胚胎发育小鼠,电融合,细胞数,核型,四倍体胚胎小鼠2细胞期经电融合后的早期胚胎发育EARLYDEVELOPMENTOFMOUSEEMBRYOSPRODUCEDBYELECTROFUSIONAT2CELLSTAGE关键...  相似文献   

11.
The effect of trifluoperazine (TFP), a phenothiazine derivative antipsychotic drug, on ionizing radiation (IR) induced cell killing through inhibition of DNA repair was investigated in human cell lines. In clonogenic survival assay, TFP augmented IR induced cell killing. Also, TFP enhanced micronucleus formation in irradiated human lymphocytes. The effect of TFP and other known DNA repair inhibitors like wortmannin and caffeine, on irradiated cells, was compared by MTT assay. On the other hand, TFP failed to increase the toxicity induced by H2O2. Repair of DNA double strand breaks induced by IR was markedly inhibited by TFP, as determined by field inversion gel electrophoresis (FIGE). Further, TFP increased radiation induced apoptosis, which was accompanied by enhanced G2/M arrest. Thus, our results strongly suggest that TFP inhibits repair of DNA damage induced by IR, which significantly implicates the possibility of using TFP as an adjuvant to radiotherapy.  相似文献   

12.
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.  相似文献   

13.
A role for heat-shock proteins (HSPs) in proliferation after heat treatment was considered in synchronized mouse neuroblastoma cells. For this purpose enhancement of HSP synthesis after heat treatment was inhibited by actinomycin D and the effect of this on cell cycle progression into mitosis and on cell survival was studied both in thermoresistant G1- and in thermosensitive late S/G2-phase cells. In G1-phase cells expression of basal and heat-induced HSP synthesis was the same as that in late S/G2-phase cells, which suggests that regulation of thermoresistance throughout the cell cycle is not directly linked with HSP synthesis. The synthesis of HSP36, HSP68, and HSP70 was enhanced after a 30-min treatment at 41-43 degrees C. Increase of HSP synthesis after heat shock was partly suppressed by the presence of 0.1 microgram/ml actinomycin D during heat treatment, while 0.2 micrograms/ml prevented enhancement of HSP synthesis completely. Suppression of heat-induced HSP synthesis by actinomycin D had the same concentration dependency in G1- and late S/G2-phase cells. Actinomycin D potentiated induction of mitotic delay by heat treatment (30 min, 42.5 degrees C) but only under conditions where it actually inhibited heat-induced enhancement of HSP synthesis. Heat-induced cell killing was also potentiated by actinomycin D. The potentiating effect of actinomycin D on heat-induced mitotic delay and on heat-induced cell killing was more pronounced in G1-phase cells than in late S/G2-phase cells. These results give evidence for a role of HSPs in the resumption of proliferation after heat treatment and suggest that heated G1-phase cells are more dependent on HSP synthesis for recovery of proliferation after heat treatment than heated late S/G2-phase cells.  相似文献   

14.
X S Ye  R R Fincher  A Tang    S A Osmani 《The EMBO journal》1997,16(1):182-192
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.  相似文献   

15.
16.
Checkpoint controls in Schizosaccharomyces pombe: rad1.   总被引:29,自引:6,他引:23       下载免费PDF全文
R Rowley  S Subramani    P G Young 《The EMBO journal》1992,11(4):1335-1342
'Checkpoint' controls ensure that the events of the cell cycle are completed in an orderly fashion. For example, such controls delay mitosis until DNA synthesis and repair of radiation-induced DNA damage are complete. The rad series of radiosensitive fission yeast mutants was examined to identify strains deficient for the DNA damage-responsive checkpoint control. Five were identified. A characterization of one (rad1-1) and the wild-type is presented. The rad1-1 mutant does not arrest after irradiation, is sensitive to killing by radiation and is not arrested by hydroxyurea, and thus is also deficient for the DNA synthesis-responsive checkpoint control. The radiosensitivity of the rad1-1 mutant was greatly reduced when irradiated and maintained for 6 h in a non-dividing (density inhibited) state, demonstrating that rad1-1 is repair proficient and radiosensitive only through failure to delay. The checkpoint controls for which rad1 is required appear to regulate G2-M progression through the activity of cdc2, here implicated in this role by the coincidence of the radiation transition point and the cdc2 execution point.  相似文献   

17.
Successful recovery from DNA damage requires coordination of several biological processes. Eukaryotic cell cycle progression is delayed when the cells encounter DNA-damaging agents. This cell cycle delay allows the cells to cope with DNA damage by utilizing DNA repair enzymes. Thus, at least two processes, induction of the cell cycle delay and repair of damaged DNA, are coordinately required for recovery. In this study, a fission yeast rad mutant (slp1-362) was genetically investigated. In response to radiation, slp1 stops cell division; however, it does not restart it. This defect is suppressed when slp1-362 is combined with wee1-50 or cdc2-3w; in these mutants, the onset of mitosis is advanced due to the premature activation of p34cdc2. In contrast, slp1 is synthetically lethal with cdc25, nim1/cdr1, or cdr2, all of which are unable to activate the p34cdc2 kinase correctly. These genetic interactions of slp1 with cdc2 and its modulators imply that slp1 is not defective in either "induction of cell cycle delay" or "DNA repair." slp1+ may be involved in a critical process which restarts cell cycle progression after the completion of DNA repair. Molecular cloning of slp1+ revealed that slp1+ encodes a putative 488-amino-acid polypeptide exhibiting significant homology to WD-domain proteins, namely, CDC20 (budding yeast), p55CDC (human), and Fizzy (fly). A possible role of slp1+ is proposed.  相似文献   

18.
Yang D  Tan M  Wang G  Sun Y 《PloS one》2012,7(3):e34079
Radiotherapy is a treatment choice for local control of breast cancer. However, intrinsic radioresistance of cancer cells limits therapeutic efficacy. We have recently validated that SCF (SKP1, Cullins, and F-box protein) E3 ubiquitin ligase is an attractive radiosensitizing target. Here we tested our hypothesis that MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 Activating Enzyme) that inactivates SCF E3 ligase, could act as a novel radiosensitizing agent in breast cancer cells. Indeed, we found that MLN4924 effectively inhibited cullin neddylation, and sensitized breast cancer cells to radiation with a sensitivity enhancement ratio (SER) of 1.75 for SK-BR-3 cells and 1.32 for MCF7 cells, respectively. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest in SK-BR-3 cells, but not in MCF7 cells at early time point, and enhanced radiation-induced apoptosis in both lines at later time point. However, blockage of apoptosis by Z-VAD failed to abrogate MLN4924 radiosensitization, suggesting that apoptosis was not causally related. We further showed that MLN4924 failed to enhance radiation-induced DNA damage response, but did cause minor delay in DNA damage repair. Among a number of tested SCF E3 substrates known to regulate growth arrest, apoptosis and DNA damage response, p21 was the only one showing an enhanced accumulation in MLN4924-radiation combination group, as compared to the single treatment groups. Importantly, p21 knockdown via siRNA partialy inhibited MLN4924-induced G2/M arrest and radiosensitization, indicating a causal role played by p21. Our study suggested that MLN4924 could be further developed as a novel class of radiosensitizer for the treatment of breast cancer.  相似文献   

19.
20.
The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号