首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report isotopic data (δ2H, δ18O n = 196; δ13C, δ15N n = 142; δ34S n = 85) from human hair and drinking water (δ2H, δ18O n = 67) collected across China, India, Mongolia, and Pakistan. Hair isotope ratios reflected the large environmental isotopic gradients and dietary differences. Geographic information was recorded in H and O and to a lesser extent, S isotopes. H and O data were entered into a recently developed model describing the relationship between the H and O isotope composition of human hair and drinking water in modern USA and pre‐globalized populations. This has anthropological and forensic applications including reconstructing environment and diet in modern and ancient human hair. However, it has not been applied to a modern population outside of the USA, where we expect different diet. Relationships between H and O isotope ratios in drinking water and hair of modern human populations in Asia were different to both modern USA and pre‐globalized populations. However, the Asian dataset was closer to the modern USA than to pre‐globalized populations. Model parameters suggested slightly higher consumption of locally producedfoods in our sampled population than modern USA residents, but lower than pre‐globalized populations. The degree of in vivo amino acid synthesis was comparable to both the modern USA and pre‐globalized populations. C isotope ratios reflected the predominantly C3‐based regional agriculture and C4 consumption in northernChina. C, N, and S isotope ratios supported marine food consumption in some coastal locales. N isotope ratios suggested a relatively low consumption of animal‐derived products compared to western populations. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Release‐recapture experiments were conducted to examine temporal changes of the carbon and nitrogen stable isotope (δ13C and δ15N) ratios in the muscle tissue of artificially produced Japanese flounder Paralichthys olivaceus, juveniles. About 9000 juveniles (mean ± s .d . 43·3 ± 5·2 mm in standard length and 1·07 ± 0·37 g, n = 15) were released in each of three coastal areas: Chojagasaki, Arasaki and Jogashima with different geographical conditions, along Sagami Bay, Pacific coast of central Japan. Recapture efforts were made on 4, 11, 18, 40 and 55 days after the release. The stable isotope ratios, RNA:DNA ratio, stomach content mass (per body mass Msc) and condition factor (K) of recaptured individuals were measured. The mean ± s .d . δ13C and δ15N values (n = 15) were ?18·3 ± 0·2‰ and 12·2 ± 0·2‰, respectively at the release. Wild Japanese flounder juveniles were captured only in Chojagasaki, and the δ13C and δ15N values (n = 6) were ?14·0 ± 0·4‰ and 13·2 ± 0·7‰, respectively; these values were considered to represent the wild diet. Nutritional conditions of the released and recaptured juveniles as determined by the RNA : DNA ratio, MSC and K were indicated to be the best in Chojagasaki, in which the stable isotope ratios gradually shifted towards and reached the wild values within 40 days. This result along with stomach content analyses suggested that the released juveniles had acquired a wild feeding habit. In Arasaki and Jogashima, nutritional conditions of the recaptured juveniles were poorer, with no clear changes in the stable isotope ratios. Greatly varied stable isotope ratio values were observed in the juveniles recaptured in Chojagasaki 11 days after the release, ranging from the release levels to the wild levels. The extent of changes in the stable isotope ratios had a positive correlation to the RNA : DNA ratio and K of these juveniles (r = 0·87, n = 10 and r = 0·83, n = 18, respectively). The analyses of stable isotope ratios coupled with nutritional condition were considered to be an effective tool to examine post‐release feeding adaptation of Japanese flounder juveniles.  相似文献   

3.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

4.
The stable isotope ratios (δ13C and δ15N) of three tissues with different metabolic rates (plasma, liver, and muscle) were used to investigate temporal variation in diet among nine individual Baltic ringed seals (Phoca hispida botnica Gmelin) from the Bothnian Bay, northeast Baltic Sea. The isotope values from plasma should reflect the most recent diet, values from liver the diet of the past weeks prior to sampling, and values from muscle should integrate diet over almost the entire breeding season of the ringed seals. In general, δ13C values of liver were more enriched in 13C than were those of either muscle or plasma, suggesting that the diet of the seals may have included a higher proportion of 13C‐enriched benthic prey in April. Females showed more variable δ13C values than males, suggesting possible gender differences in diet or in foraging locations. The differences that were apparent between females possibly reflect individual variation in the onset and duration of parturition and lactation, both of which likely restrict female foraging. Previous data from parasite infections and from alimentary tract contents of the same seals were linked to the isotope data to assist in drawing inferences about changes in the diets of individual seals.  相似文献   

5.
The δ15N values of adult holometabolous insects exceed those of larvae, but otherwise little information on terrestrial invertebrates has been obtained in food‐web analyses using stable isotope ratios (δ15N, δ13C). Changes in δ13C during metamorphosis and differences between males and females have not been examined. We collected the larvae and cocoons of Euthrix potatoria (L.) (Lepidoptera: Lasiocampidae) in the field and used them to assess the species’ isotopic fractionation. Each emerged moth was divided into five body parts. We conducted stable N and C isotope analyses for each body part, as well as for cocoons and exuviae, and also compared stable isotope ratios between sexes. We confirmed δ15N enrichment through metamorphosis and estimated that δ15N enrichment is accomplished by the relative concentration of 15N due to the excretion of copious meconium, which contains abundant 14N. We also observed changes in δ13C values through metamorphosis. Both isotope values tended to change more in males than in females. The proportion of the whole‐adult weight represented by meconium was higher in males than in females, suggesting that high meconium secretion in males contributes to the sexual difference in δ15N. These phenomena may be common in Holometabola, which require a pupal stage. For more accurate food‐web assessments, it is important to consider stable isotope changes during different life cycles, as well as sexual differences.  相似文献   

6.
Stable isotopes (δ13C, δ15N, and δ34S) are used to characterize the diet of the adult individuals (n = 99) interred in the Namu burial ground located on the Polynesian outlier of Taumako (~300–750 BP). Polynesian outliers are islands on the fringe of Remote Oceania that were inhabited by a back migration of populations from Polynesia during prehistory. As a result of admixture with nearby island communities, little is known about the social structure and social diversity of the prehistoric inhabitants of Taumako. The distribution of prestige grave goods within the Namu cemetery has been used as evidence to support the premise that Taumakoan social structure was stratified like Polynesian societies. Here we test the hypothesis that “wealthy” individuals and males will display isotopic ratios indicative of the consumption of “high status” foods in the Pacific islands such as pork, chicken, sea turtle, and pelagic fish. The isotope results suggest the δ34S values were diagenetically altered, possibly an effect of volcanism. The carbon and nitrogen stable isotope ratios indicate that the diet of all the individuals included a mixture of C3 terrestrial plant foods (likely starchy staples such as yam, taro, and breadfruit, in addition to nuts) and a variety of marine resources, including reef and pelagic fish. The stable isotope results indicate that wealthy individuals and males were eating more foods from higher trophic levels, interpreted as being high status animal foods. The socially differentiated food consumption patterns are discussed within a Pacific island context. Am J Phys Anthropol 151:589–603, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Longnose gar Lepisosteus osseus were collected from May 2012 to July 2013 in the Charleston Harbor and Winyah Bay estuaries (SC, U.S.A.). This study examined trends in stomach fullness, described major prey components and their importance in the diet of L. osseus, compared stomach content‐based trophic level estimates with the stable‐isotope‐based proxy: δ15N and tested for the occurrence of an ontogenetic diet shift using stomach content analysis and stable C and N isotopes (δ13C and δ15N). Dominant prey families were Clupeidae, Sciaenidae, Penaeidae, Fundulidae and Mugilidae, with the highest consumption rates in autumn. Trophic levels calculated using stomach contents did not correspond to δ15N (P > 0·05). Stomach contents and stable‐isotope signatures indicate ontogenetic prey composition shifts from low trophic level benthic prey (fundulids) to higher trophic level pelagic prey (clupeids) as the fish grow between 400 and 600 mm in standard length. Due to their biomass, abundance and top predator status, L. osseus play a significant ecological role in the estuarine community composition, although this effect has often been overlooked by past researchers and should be considered in future estuarine community studies.  相似文献   

8.
Stable nitrogen (δ15N) and carbon (δ13C) isotope ratios from muscle, liver and yolk were analysed from the mother and embryos of an ovoviviparous shark, Hexanchus griseus. Embryonic liver and muscle had similar δ15N and δ13C ratios or were depleted in heavy isotopes, compared to the same maternal somatic and reproductive yolk tissues, but no relationship existed between δ15N or δ13C and embryo length, as expected, because a switch to placental nourishment is lacking in this species. This study expands the understanding of maternal nourishment and embryonic stable isotope differences in ovoviviparous sharks.  相似文献   

9.
Differences in trophic niches among carabid beetles (Coleoptera: Carabidae) co‐occurring on the forest floors of warm temperate forests in central Japan were studied using carbon (δ13C) and nitrogen (δ15N) stable isotope analyses. Different carabid species showed similar δ15N values, which were higher than those of their possible invertebrate prey (herbivores and detritivores) collected from the litter layer, indicating that these species were consumers in the same trophic level. In contrast, δ13C values differed among carabid species, indicating interspecific differences in prey animals. The variation in the δ13C value was larger in summer than in autumn. In summer, δ13C values indicated that some carabids depended highly on either grazing (low δ13C values) or detrital sources (high δ13C values) within the food chain [Chlaenius posticalis Motschulsky and Haplochlaenius costiger (Chaudoir), respectively], although other species with intermediate δ13C values likely depended on both. The latter group of species comprised mostly two dominant genera (Carabus and Synuchus). Although congeners might have similar feeding habits, the stable isotope ratios indicated trophic niche differences between adults of different species and between adults and larvae of the same genus.  相似文献   

10.
1. Despite the ubiquity and abundance of water striders (Hemiptera: Gerridae) in temperate streams and rivers and their potential usefulness as sentinels in contaminant studies, little is known about their feeding ecology and lipid dynamics. 2. In this study we used stable isotopes of carbon (δ13C) and nitrogen (δ15N) and elemental carbon to nitrogen ratios (C/N) to assess dietary habits and lipid content, respectively, for water striders. 3. To determine diet‐tissue fractionation factors, nymphs of the most common species in New Brunswick, Canada, Aquarius remigis were reared in the laboratory for 73 days and exhibited rapid isotopic turnover in response to a switch in diet (C half‐life = 1.5 days, N half‐life = 7.8 days). Their lipid content increased towards the end of the growing season and resulted in lower δ13C values. Diet‐tissue fractionation factors were established after correction of δ13C data for the confounding effect of de novo lipid synthesis (strider δ13Cadj– diet δ13Cadj = 0.1‰, strider δ15N – diet δ15N = 2.7‰). 4. Water striders from the majority of 45 stream sites (83%) in New Brunswick had less than 50% contribution of aquatic carbon to their diets but showed a gradual increase in the contribution of this carbon source to their diet with increasing stream size. 5. These data indicate that striders exhibit a strong connection to terrestrial carbon sources, making them important users of energy subsidies to streams from the surrounding catchment. However, this dependence on terrestrial organic matter may limit their utility as indicators of contamination of aquatic systems by heavy metals and other pollutants.  相似文献   

11.
Assays of elemental and stable‐isotope ratios across growth increments of scales have the potential to provide a non‐lethal alternative to otolith chemistry for identifying migration and ontogenetic trophic shifts. A central assumption when employing scales as otolith analogues is that any scale from an individual will provide equivalent information about the chemical history of that fish. This assumption was investigated with multiple scales from wild and captive euryhaline Atlantic tarpon Megalops atlanticus from the north‐west Gulf of Mexico. Elemental (Sr:Ca) and isotope‐ratio (δ13C and δ15N) life‐history profiles were compared among multiple scales from each fish. All three chemical proxies showed highly consistent patterns among non‐regenerated scales, while patterns in regenerated scales diverged, indicating rapid regrowth of interior scale material at the onset of regeneration. Patterns of Sr:Ca and δ13C covaried, supporting their use as salinity proxies, while δ15N patterns were consistent with ontogenetic diet shifts. Water samples taken from aquaria holding captive fish were used to calculate partition coefficients for a suite of elements in M. atlanticus scales for future quantification of migratory movements in the region. Together, these results support the assumption that non‐regenerated scales from individual M. atlanticus provide equivalent chemical histories, further validating their use as a viable non‐lethal alternative to otoliths.  相似文献   

12.
We present a comparison of feather stable isotope (δ13C, δ15N) patterns representing the habitat and diet conditions for two subspecies of willow warblers Phylloscopus trochilus that breed in parapatry, but winter in different regions of sub‐Saharan Africa. Previous analyses have shown that on average winter moulted innermost primaries (P1) show subspecific differences in δ15N values, although individuals show substantial variation for both δ13C and δ15N within the subspecies. We examined whether corresponding variation in the timing of the winter moult, as reflected by consistent intra‐wing correlations for individual's δ13C and δ15N values, could explain some of the previously observed isotopic variation. Further, differential subspecific adaptations to winter precipitation patterns across Africa might result in a variable degree of site fidelity or itinerancy during moult. We found no consistent trend in isotopic values from innermost to outermost primaries, thus inter‐individual variation in the timing of moult does not explain the subspecific isotopic variation for P1. Patterns in wing feather δ13C and δ15N values indicated that 41% of the individuals from both subspecies shifted their diet or habitats during winter moult. Importantly, despite well‐documented itinerancy in willow warblers during the winter, 59% of the individuals had feather isotope values consistent with stable use of habitats or diets during winter moult. Repeatability analyses suggest that individuals of both subspecies initiate moult in similar habitats from year‐to‐year while feeding on isotopically similar diets.  相似文献   

13.
We measured stable-nitrogen (δ15N) and stable-carbon (δ13C) isotope ratios in muscle and hair from 7 northern fur seals (Callorhinus ursinus) from the Pribilof Islands, Alaska, and 27 Steller sea lions (Eumetopias jubatus), and 14 harbor seals (Phoca vitulina) from the Gulf of Alaska and coast of Washington State, in order to contrast dietary information derived from isotopic vs. available conventional dietary studies. Stable-nitrogen-isotope analysis of muscle revealed that harbor seals were enriched over sea lions (mean δ15N = 18.6‰vs. 17.5‰) which were in turn enriched over northern fur seals (mean δ15N = 16.6‰). Trophic segregation among these species likely results primarily from differential reliance on herring (Clupea harengus), Atka mackerel (Pleurogrammus monopterygius), and large vs. small walleye pollock (Theregra chalcogramma). According to their δ15N values, adult male Steller sea lions showed a higher trophic position than adult females (mean δ15N: 18.0‰vs. 17.2‰), whereas adult female northern fur seals were trophically higher than juvenile male fur seals (mean δ15N: 16.5‰vs. 15.0‰). Each of these observed differences likely resulted from differential reliance on squid or differences in the size range of pollock consumed. Three northern fur seal pups showed higher δ15N enrichment over adults (mean 17.7‰vs. 15.8‰) due to their reliance on their mother's milk. Stable-carbon isotope measurements of hair revealed a cline toward more negative values with latitude. Segregation in hair δ13C between Steller sea lions and harbor seals off the coast of Washington (mean δ13C: ?13.6‰vs.?15.0‰) reflected the greater association of harbor seals with freshwater input from the Columbia River. Our study demonstrates the utility of the stable isotope approach to augment conventional dietary analyses of pinnipeds and other marine mammals.  相似文献   

14.
Feces are a treasure trove in the study of animal behavior and ecology. Stable carbon and nitrogen isotope analysis allows to assess the dietary niches of elusive primate species and primate breastfeeding behavior. However, some fecal isotope data may unwillingly be biased toward the isotope ratios of undigested plant matter, requiring more consistent sample preparation protocols. We assess the impact of this potential data skew in 114 fecal samples of wild bonobos (Pan paniscus) by measuring the isotope differences (Δ13C, Δ15N) between bulk fecal samples containing larger particles (>1 mm) and filtered samples containing only small particles (<1 mm). We assess the influence of fecal carbon and nitrogen content (ΔC:N) and sample donor age (subadult, adult) on the resulting Δ13C, Δ15N values (n = 228). Additionally, we measure the isotope ratios in three systematically sieved fecal samples of chimpanzees (Pan troglodytes verus), with particle sizes ranging from 20 μm to 8 mm (n = 30). We found differences in fecal carbon and nitrogen content, with the smaller fecal fraction containing more nitrogen on average. While the Δ13C values were small and not affected by age or ΔC:N, the Δ15N values were significantly influenced by fecal ΔC:N, possibly resulting from the differing proportions of undigested plant macroparticles. Significant relationships between carbon stable isotope ratios (δ13C) values and %C in large fecal fractions of both age groups corroborated this assessment. Δ15N values were significantly larger in adults than subadults, which should be of concern in isotope studies comparing adult females with infants to assess breastfeeding. We found a random variation of up to 3.0‰ in δ13C and 2.0‰ in nitrogen stable isotope ratios within the chimpanzee fecal samples separated by particle sizes. We show that particle size influences isotope ratios and propose a simple, cost-effective filtration method for primate feces to exclude larger undigested food particles from the analysis, which can easily be adopted by labs worldwide.  相似文献   

15.
16.
We analyzed the δ13C and δ15N values in the vibrissae of captive adult breeding South American sea lions (Otaria byronia) fed at a constant diet and then used this information to analyze the change in stable isotope values along the vibrissae from wild individuals. The overall diet‐to‐vibrissa discrimination factor of the captive animals was 3.0‰ ± 0.1‰ for δ13C and 3.6‰ ± 0.1‰ for δ15N, but the stable isotope ratios fluctuated periodically despite constant diet. The δ13C and δ15N values of the captive male declined at the end of the breeding season, whereas the δ13C values of the female increased during the central part of pregnancy and the δ15N values peaked during lactation. The δ13C and δ15N values of adult wild specimens also fluctuated periodically and vibrissae growth rate (0.15 mm/d in both sexes) was slightly lower than in captivity (0.17 mm/d), assuming an annual periodicity for oscillations. Similarities in the amplitude of the cycles of captive and wild males suggested that fasting was probably the main source of periodic variability in the δ15N of wild males, whereas pregnancy and lactation were probably the main source of periodic variability for the δ13C of wild females.  相似文献   

17.
Natural abundance stable‐isotope analysis (δ13C and δ15N) and C:N ratios were used to study the ammocoete phase of two common non‐parasitic lamprey species (least brook lamprey Lampetra aepyptera and American brook lamprey Lethenteron appendix) in two tributaries of the Ohio River (U.S.A.). The C:N ratios suggest that each species employs different lipid accumulation strategies to support its metamorphosis and recruitment into an adult animal. Ammocoete δ13C values generally increased with increasing C:N values. In contrast to δ13C, ammocoete δ15N values were weakly related to the total length (LT) in L. aepyptera, but positively correlated to both LT and C:N ratios in L. appendix. In L. appendix, C:N also correlated positively with LT, and presumably age. A Bayesian mixing model using δ13C and δ15N was used to estimate nutritional subsidies of different potential food resources to ammocoetes at each site. The models suggested that although nutritional subsidies to ammocoetes varied as a function of site, ammocoetes were generally reliant on large contributions (42–62% at three sites) from aquatic plants. Contributions from aquatic sediment organic matter were also important at all sites (32–63%) for ammocoetes, with terrestrially derived plant materials contributing smaller amounts (4‐33%). These findings provide important insights into the feeding ecology and nutrition of two species of lampreys. They also suggest that similar and other quantitative approaches are required to (1) fully understand how the observed stable‐isotopes ratios are established in ammocoetes and (2) better assess ammocoete nutritional subsidies in different natal streams.  相似文献   

18.
Within-lake variability in carbon and nitrogen stable isotope signatures   总被引:3,自引:0,他引:3  
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios.  相似文献   

19.
Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.  相似文献   

20.
Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory‐reared colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae: Solenopsidini) to test the effects of metamorphosis, diet, and lipid storage on carbon and nitrogen stable isotope ratios. Effects of metamorphosis were examined in ant colonies maintained on a control diet of domestic crickets and sucrose solution. Effects of a diet shift were evaluated by adding a tuna supplement to select colonies. Effects of lipid content on stable isotopes were tested by treating worker ants with polar and non‐polar solvents. δ13C and δ15N values of larvae, pupae, and workers were measured by mass spectrometry on whole‐animal preparations. We found a significant effect of colony age on δ13C, but not δ15N; larvae, pupae, and workers collected at 75 days were slightly depleted in 13C relative to collections at 15 days (Δδ13C = ?0.27‰). Metamorphosis had a significant effect on δ15N, but not δ13C; tissues of each successive developmental stage were increasingly enriched in 15N (pupae, +0.5‰; workers, +1.4‰). Availability of tuna resulted in further shifts of about +0.6‰ in isotope ratios for all developmental stages. Removing fat with organic solvents had no effect on δ13C, but treatment with a non‐polar solvent resulted in enriched δ15N values of +0.37‰. Identifying regular patterns of isotopic enrichment as described here should improve the utility of stable isotopes in diet studies of insects. Our study suggests that researchers using 15N enrichment to assess trophic levels of an organism at different sites need to take care not to standardize with immature insect herbivores or predators at one site and mature ones at another. Similar problems may also exist when standardizing with holometabolous insects at one site and spiders or hemimetabolous insects at another site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号