首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specialized grasping feet of primates, and in particular the nature of the hallucal grasping capabilities of living strepsirrhines and tarsiers (i.e., ‘prosimians’), have played central roles in the study of primate origins. Prior comparative studies of first metatarsal (Mt1) morphology have documented specialized characters in living prosimians that are indicative of a more abducted hallux, which in turn is often inferred to be related to an increased ability for powerful grasping. These include a well-developed peroneal process and a greater angle of the proximal articular surface relative to the long axis of the diaphysis. Although known Mt1s of fossil prosimians share these characters with living non-anthropoid primates, Mt1 morphology in the earliest crown group anthropoids is not well known. Here we describe two Mt1s from the Fayum Depression of Egypt - one from the latest Eocene (from the ∼34 Ma Quarry L-41), and one from the later early Oligocene (from the ∼29-30 Ma Quarry M) - and compare them with a sample of extant and fossil primate Mt1s. Multivariate analyses of Mt1 shape variables indicate that the Fayum specimens are most similar to those of crown group anthropoids, and likely belong to the stem catarrhines Catopithecus and Aegyptopithecus specifically, based on analyses of size. Also, phylogenetic analyses with 16 newly defined Mt1 characters support the hypotheses that “prosimian”-like Mt1 features evolved along the primate stem lineage, while crown anthropoid Mt1 morphology and function is derived among primates, and likely differed from that of basal stem anthropoids. The derived loss of powerful hallucal grasping as reflected in the Mt1 morphology of crown anthropoids may reflect long-term selection for improved navigation of large-diameter, more horizontal branches at the expense of movement in smaller, more variably inclined branches in the arboreal environment.  相似文献   

2.
The first metatarsal of living Primates is characterized by a well-developed peroneal process, which appears proportionally larger in prosimians than in anthropoids. A large peroneal process has been hypothesized to: 1) reflect powerful hallucal grasping, 2) act as a buttress to reduce strain from loads acting on the entocuneiform-first metatarsal joint during landing and grasping after a leap, and/or 3) correlate with differences in physiological abduction of the hallux. In this study, we address the latter two hypotheses by comparing the morphology of the peroneal process in 143 specimens representing 37 species of extant prosimians, platyrrhine anthropoids, and tupaiids (tree shrews) that engage in different locomotor behaviors. In particular, we compare taxa that vary in leaping frequency and hallucal abduction. Linear and angular measurements on the first metatarsal were obtained to evaluate differences in relative peroneal process thickness and length, first metatarsal abduction angle, and overall first metatarsal shape. Leaping frequency was significantly correlated only with relative peroneal process thickness within extant lorisoids. Relative process length was positively correlated with the angle of hallucal abduction within prosimians; this angle is significantly greater in prosimians than anthropoids. Multivariate analyses of metatarsal shape effectively separate species along phylogenetic lines, but not by locomotor behaviors. The hypothesis that the peroneal process on the first metatarsal reduces the loads on the entocuneiform-first metatarsal joint during landing after a leap is in part supported by data from extant lorisoids (i.e., slow quadrupedal lorises vs. leaping galagos). A peroneal process of greater length within prosimians may serve to increase the lever arm for the peroneus longus muscle in order to prevent hyper-abduction, followed by inversion in locomotor situations where the animal's weight is born on a highly divergent/abducted hallux.  相似文献   

3.
Euprimate grasping feet are characterized by a suite of morphological traits, including an enlarged peroneal process on the base of the first metatarsal, which serves as the insertion site of the peroneus longus muscle. In prosimians, a large process has typically been associated with a powerful hallucal grasp via the contraction of the peroneus longus to adduct the hallux. Recent electromyography (EMG) studies have documented that peroneus longus does not contribute substantially to hallucal grasping in lemurids (Boyer et al., 2007). However, non-lemurid prosimians have a I-V opposable grasp complex that is morphologically different and phylogenetically more primitive than the I-II adductor grasp complex of the lemurids previously studied. Therefore, it is possible that peroneus longus did function during grasping in early euprimates, but lost this function in large-bodied lemurids. The present study tests the hypothesis that a large peroneal process is related to powerful grasping ability in primates displaying the more primitive I-V grasp complex. We use EMG to evaluate the recruitment of peroneus longus, other crural muscles, and adductor hallucis in static and locomotor grasping activities of the slow loris (Nycticebus coucang). Results show that peroneus longus is active during grasping behaviors that require the subject to actively resist inversion of the foot, and likely contributes to a hallucal grasp in these activities. Peroneus longus activity level does not differ between grasping and power grasping activities, nor does it differ between grasping and non-grasping locomotor modes. Conversely, the digital flexors and hallucal adductor are recruited at higher levels during power grasping and grasping locomotor modes. Consequently, we reject the hypothesis that an enlarged peroneal process represents an adaptation specifically to enhance the power of the I-V grasp, but accept that the muscle likely plays a role in adducting the hallux during grasping behaviors that require stabilization of the ankle, and suggest that further work is necessary to determine if this role is sufficient to drive selection for a large peroneal process.  相似文献   

4.
A key feature in primate evolution is a foot with a divergent opposable hallucal metatarsal bearing a large peroneal process. Extant primates are characterized by a powerful hallucal grasp—an either “euprimate” or “plesiadapoid-euprimate” ancestor acquisition—that facilitates the exploitation of fine branches, an ability that increased the fitness of ancestral euprimates. In this context, the didelphid marsupial Caluromys has been used as the extant analog to this primate morphotype stage due to some morphological, ecological, and behavioral features. However, the extent to which and the positional and support contexts in which Caluromys uses powerful hallucal grasping are not known. This renders analogies to any mode of “euprimate” or “stem primate” grasping poorly substantiated. The present paper quantifies locomotor and postural behavior, support use, and associated frequencies of hallucal grasping in captive Caluromys philander via analysis of video recordings. During locomotion, Caluromys primarily used diagonal sequence walk, clamber, and climb, whereas stand, foot-hang, and bipedal stand were the dominant postures. Small, fine, horizontal, and moderately inclined branches were frequently used. Overall rates of “apparently powerful hallucal grasps” were high, but were exceptionally high during clamber, climb, foot-hang, and bipedal stand. Additionally, an “apparently powerful hallucal grasp” was very common upon fine, small, steep, and vertical branches. The extensive use of such powerful hallucal grasping provided stability and safety that enabled Caluromys to proficiently utilize fine branches of various orientations. The ability to negotiate such unstable supports, further reflected in foot anatomy, provides evidence that the morphobehavioral complex of Caluromys can serve as an extant analog to the plesiadapoid-euprimate ancestor, represented as a terminal branch feeder with effective hallucal grasping.  相似文献   

5.
A foot specialized for grasping small branches with a divergent opposable hallux (hallucal grasping) represents a key adaptive complex characterizing almost all arboreal non-human euprimates. Evolution of such grasping extremities probably allowed members of a lineage leading to the common ancestor of modern primates to access resources available in a small-branch niche, including angiosperm products and insects. A better understanding of the mechanisms by which euprimates use their feet to grasp will help clarify the functional significance of morphological differences between the euprimate grasp complex and features representing specialized grasping in other distantly related groups (e.g., marsupials and carnivorans) and in closely related fossil taxa (e.g., plesiadapiforms). In particular, among specialized graspers euprimates are uniquely characterized by a large peroneal process on the base of the first metatarsal, but the functional significance of this trait is poorly understood. We tested the hypothesis that the large size of the peroneal process corresponds to the pull of the attaching peroneus longus muscle recruited to adduct the hallux during grasping. Using telemetered electromyography on three individuals of Varecia variegata and two of Eulemur rubriventer, we found that peroneus longus does not generally exhibit activity consistent with an important function in hallucal grasping. Instead, extrinsic digital flexor muscles and, sometimes, the intrinsic adductor hallucis are active in ways that indicate a function in grasping with the hallux. Peroneus longus helps evert the foot and resists its inversion. We conclude that the large peroneal tuberosity that characterizes the hallucal metatarsal of prosimian euprimates does not correlate to "powerful" grasping with a divergent hallux in general, and cannot specifically be strongly linked to vertical clinging and climbing on small-diameter supports. Thus, the functional significance of this hallmark, euprimate feature remains to be determined.  相似文献   

6.
A hypertrophied peroneal process of the hallucal metatarsal, as seen in prosimians, has been linked to a powerful hallucal grasp via the contraction of the peroneus longus (PL) muscle causing adduction of the big toe. Electromyography (EMG) studies of lemurs and lorises, however, have concluded that PL is not substantially recruited during small branch locomotion when powerful hallucal grasping is needed most, and have suggested that there is no link between PL activity and peroneal process size. If this is correct, then we should also observe no change in PL activity when strong hallucal grasping is required in anthropoids because they have a relatively smaller peroneal process for PL to act on. This study addresses this hypothesis by evaluating EMG of crural and pedal muscles in capuchins (Sapajus apella) walking on substrates of different diameters. During locomotion on the narrow substrate (3.1 cm) that should elicit a strong hallucal grasp, we observed an intense increased recruitment of adductor hallucis, but only sustained, rather than markedly increased, PL activity. This indicates that PL is not involved in powerful hallucal grasping in capuchins, and confirms similar findings previously documented in prosimians. We continue to reject the hypothesis that a large peroneal process is an adaptation for powerful grasping and further argue that its morphology may not be related to PL's ability to adduct the hallux at all. In addition, the morphology of the peroneal process should not be used to assess hallucal grasping performance in fossils. Am J Phys Anthropol 156:553–564, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The study of muscle function in nonhuman primates through the technique of electromyography (EMG) has facilitated the identification of specific functional roles for muscles in particular behaviors. This has led to a more complete understanding of the biomechanics of certain regions of the musculoskeletal system, and should facilitate our ability to identify morphological features useful in the functional interpretation of fossil material. The current paper represents one such investigation of a new set of morphometric characters of the scapula and proximal humerus suggested by EMG analyses of shoulder muscle function. A set of new metric variables were examined on the scapulae and proximal humeri of 25 species of extant anthropoid primates, as well as on casts of scapulae and humeri of three fossil primate taxa. The variables are primarily related to the line of action and attachments of the rotator cuff muscles. The position of the scapular spine, the degree of lateral expansion of the subscapular fossa, the size and shape of the subscapularis insertion facet on the lesser tubercle, and the orientation of the infraspinatus insertion facet on the greater tubercle all appear to successfully sort the extant taxa into locomotor groups. Their appearance on the fossil specimens generally supports previous functional interpretations of each taxon's locomotor abilities based on a variety of other characters, suggesting that these traits are equally applicable to fossil material. © Wiley-Liss, Inc.  相似文献   

8.
Mice raised in experimental habitats containing an artificial network of narrow “arboreal” supports frequently use hallucal grasps during locomotion. Therefore, mice in these experiments can be used to model a rudimentary form of arboreal locomotion in an animal without other morphological specializations for using a fine branch niche. This model would prove useful to better understand the origins of arboreal behaviors in mammals like primates. In this study, we examined if locomotion on these substrates influences the mid‐diaphyseal cross‐sectional geometry of mouse metatarsals. Thirty CD‐1/ICR mice were raised in either arboreal (composed of elevated narrow branches of varying orientation) or terrestrial (flat ramps and walkways that are stratified) habitats from weaning (21 days) to adulthood (≥4 months). After experiments, the hallucal metatarsal (Mt1) and third metatarsal (Mt3) for each individual were isolated and micro‐computed tomography (micro‐CT) scans were obtained to calculate mid‐shaft cross‐sectional area and polar section modulus. Arboreal mice had Mt1s that were significantly more robust. Mt3 cross sections were not significantly different between groups. The arboreal group also exhibited a significantly greater Mt1/Mt3 ratio for both robusticity measures. We conclude that the hallucal metatarsal exhibits significant phenotypic plasticity in response to arboreal treatment due to habitual locomotion that uses a rudimentary hallucal grasp. Our results support the hypothesis that early adaptive stages of fine branch arboreality should be accompanied by a slightly more robust hallux associated with the biomechanical demands of this niche. J. Morphol. 276:759–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
A recently discovered partial skeleton of the adapid Cantius trigonodus from the early Eocene Willwood Formation of the Bighorn Basin, Wyoming, documents substantial new information about the anatomy of the oldest lemuriform primates. It is very similar in all features to its descendant, middle Eocene Notharctus, and both exhibit numerous resemblances to certain extant Malagasy lemurs, particularly Lepilemur, Propithecus, Lemur, and Hapalemur griseus. Like these forms, Cantius had relatively long hind limbs and short forelimbs. Forelimb traits (prominent brachialis flange of the humerus, well-developed olecranon process of the ulna, and strong shafts of the ulna and radius) suggest active use of the forelimbs in progression. Specializations in the hind limb (e.g., expanded articular surface of the femoral head, narrow and elevated patellar trochlea and prominent lateral trochlear ridge, posteriorly oriented femoral and tibial condyles, narrow and elongate talus, and hallucal metatarsal with prominent peroneal tubercle) indicate capabilities for leaping and for powerful grasping with an opposable hallux. Cantius was presumably primitive in having a relatively long ischium and much more distal inferior tibial tuberosity than most extant lemurs--traits suggesting that powerful extension of the thigh and flexion at the knee were important in its locomotion and posture. We interpret Cantius as an active arboreal quadruped with a propensity for leaping. The existence of this skeletal structure in one of the oldest primates of modern aspect suggests that it represents the primitive lemuriform morphology.  相似文献   

10.
The glenohumeral joint, the most mobile joint in the body of hominoids, is involved in the locomotion of all extant primates apart from humans. Over the last few decades, our knowledge of how variation in its morphological characteristics relates to different locomotor behaviors within extant primates has greatly improved, including features of the proximal humerus and the glenoid cavity of the scapula, as well as the muscles that function to move the joint (the rotator cuff muscles). The glenohumeral joint is a region with a strong morphofunctional signal, and hence, its study can shed light on the locomotor behaviors of crucial ancestral nodes in the evolutionary history of hominoids (e.g., the last common ancestor between humans and chimpanzees). Hominoids, in particular, are distinct in showing round and relatively big proximal humeri with lowered tubercles and flattened and oval glenoid cavities, morphology suited to engage in a wide range of motions, which enables the use of locomotor behaviors such as suspension. The comparison with extant taxa has enabled more informed functional interpretations of morphology in extinct primates, including hominoids, from the Early Miocene through to the emergence of hominins. Here, I review our current understanding of glenohumeral joint functional morphology and its evolution throughout the Miocene and Pleistocene, as well as highlighting the areas where a deeper study of this joint is still needed.  相似文献   

11.
Although the majority of extant primates are described as "quadrupedal," there is little information available from natural habitats on the locomotor and postural behavior of arboreal primate quadrupeds that are not specialized for leaping. To clarify varieties of quadrupedal movement, a quantitative field study of the positional behavior of a highly arboreal cercopithecine, Macaca fascicularis, was conducted in northern Sumatra. At least 70% of locomotion in travel, foraging, and feeding was movement along continuous substrates by quadrupedalism and vertical climbing. Another 14-25% of locomotion was across substrates by pronograde clambering and vertical clambering. The highest frequency of clambering occurred in foraging for insects, and on the average smaller substrates were used in clambering than during quadrupedal movement. All postural behavior during foraging and feeding was above-substrate, largely sitting. Locomotion across substrates requires grasping branches of diverse orientations, sometimes displaced away from the animal's body. The relatively low frequency of across-substrate locomotion appears consistent with published analyses of cercopithecoid postcranial morphology, indicating specialization for stability of limb joints and use of limbs in parasagittal movements, but confirmation of this association awaits interspecific comparisons that make the distinction between along- and across-substrate forms of locomotion. It is suggested that pronograde clambering as defined in this study was likely a positional mode of considerable importance in the repertoire of Proconsul africanus and is a plausible early stage in the evolution of later hominoid morphology and locomotor behavior.  相似文献   

12.
The positional behaviors inferred for early Tertiary adapiform primates have been the subject of considerable debate. Adapiform wrist morphology is analyzed here within the context of extant morphoclines in carpal joint shape in order to reconstruct adapiform positional behavior. Extant vertical clingers, slow climbers, and arboreal quadrupeds differ significantly from one another in length of the m. flexor carpi ulnaris lever arm, shape of the midcarpal joint articular surface, and size and divergence of the pollical carpometacarpal articulation. These morphological differences are functionally related to differential requirements for wrist flexion, midcarpal mobility and stability, and pollical grasping, respectively. Adapis, Notharctus, and Smilodectes share with living arboreal quadrupeds a tall pisiform body, a mediolaterally flat midcarpal joint surface, and a relatively unexpanded thumb joint. Functionally, these features are related to flexing the wrist from extended positions during palmigrade, quadrupedal locomotion, increasing midcarpal joint stability during quadrupedal, weight-bearing postures, and grasping arboreal supports of predominantly horizontal and oblique orientation. The Messel adapiform (genus indet.) shares certain features of the midcarpal and pollical carpometacarpal articulations with extant vertical clingers, suggesting that this taxon used vertical substrates more frequently than other adapiforms. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Primate shoulder morphology has been linked with locomotor habits, oftentimes irrespective of phylogenetic heritage. Among hominoids, juvenile African apes are known to climb more frequently than adults, while orangutans and gibbons maintain an arboreal lifestyle throughout ontogeny. This study examined if these ontogenetic locomotor differences carry a morphological signal, which should be evident in the scapulae of chimpanzees and gorillas but absent in taxa that do not display ontogenetic behavioral shifts. The scapular morphology of five hominoid primates and one catarrhine outgroup was examined throughout ontogeny to evaluate if scapular traits linked with arboreal activities are modified in response to ontogenetic behavioral shifts away from climbing. Specifically, the following questions were addressed: 1) which scapular characteristics distinguish taxa with different locomotor habits; and 2) do these traits show associated changes during development in taxa known to modify their behavioral patterns? Several traits characterized suspensory taxa from nonsuspensory forms, such as cranially oriented glenohumeral joints, obliquely oriented scapular spines, relatively narrow infraspinous fossae, and inferolaterally expanded subscapularis fossae. The relative shape of the dorsal scapular fossae changed in Pan, Gorilla, and also Macaca in line with predictions based on reported ontogenetic changes in locomotor behavior. These morphological changes were mostly distinct from those seen in Pongo, Hylobates, and Homo and imply a unique developmental pattern, possibly related to ontogenetic locomotor shifts. Accordingly, features that sorted taxa by locomotor habits and changed in concert with ontogenetic behavioral patterns should be particularly useful for reconstructing the locomotor habits of fossil forms. Am J Phys Anthropol 152:239–260, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Living rodents show great diversity in their locomotor habits, including semiaquatic, arboreal, fossorial, ricochetal, and gliding species from multiple families. To assess the association between limb morphology and locomotor habits, the appendicular skeletons of 65 rodent genera from 16 families were measured. Ecomorphological analyses of various locomotor types revealed consistent differences in postcranial skeletal morphology that relate to functionally important traits. Behaviorally similar taxa showed convergent morphological characters, despite distinct evolutionary histories. Semiaquatic rodents displayed relatively robust bones, enlarged muscular attachments, short femora, and elongate hind feet. Arboreal rodents had relatively elongate humeri and digits, short olecranon processes of the ulnae, and equally proportioned fore and hind limbs. Fossorial rodents showed relatively robust bones, enlarged muscular attachments, short antebrachii and digits, elongate manual claws, and reduced hind limb elements. Ricochetal rodents displayed relatively proximal insertion of muscles, disproportionate limbs, elongate tibiae, and elongate hind feet. Gliding rodents had relatively elongate and gracile bones, short olecranon processes of the ulnae, and equally proportioned fore and hind limbs. The morphological differences observed here can readily be used to discriminate extant rodents with different locomotor strategies. This suggests that the method could be applied to extinct rodents, regardless of ancestry, to accurately infer their locomotor ecologies. When applied to an extinct group of rodents, we found two distinct ecomorphs represented in the beaver family (Castoridae), semiaquatic and semifossorial. There was also a progressive trend toward increased body size and increased aquatic specialization in the giant beaver lineage (Castoroidinae). J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
We document the morphology of the bony labyrinth of Chilecebus carrascoensis, one of the best preserved early platyrrhines known, based on high resolution CT scanning and 3D digital reconstruction. The cochlea is low and conical in form, as in other anthropoids, but has only 2.5 spiral turns. When the allometric relationship with body mass is considered, cochlear size is similar to that in extant primates. The relative size of the semicircular canals, which is well within the range of other primates, indicates that Chilecebus carrascoensis was probably not as agile in its locomotion as other small-bodied platyrrhines such as Leontopithecus rosalia, Saguinus oedipus, and Callithrix jacchus, but it probably was not a suspensory acrobat or a slow climber. The proportion, shape, and orientation of the semicircular canals in Chilecebus carrascoensis also mirror that typically seen in extant primates. However, no single variable can be used for predicting the locomotor pattern in Chilecebus carrascoensis. Based on Principle Component Analysis (PCA) scores we calculated rescaled Euclidean distances for various taxa; primates with similar locomotor patterns tend to share shorter distances. Results for Chilecebus carrascoensis underscore its general resemblance to living quadrupedal primate taxa, but it is not positioned especially near any single living taxon.  相似文献   

16.
Our understanding of locomotor evolution in anthropoid primates has been limited to those taxa for which good postcranial fossil material and appropriate modern analogues are available. We report the results of an analysis of semicircular canal size variation in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene, and use these data to reconstruct evolutionary changes in locomotor adaptations in anthropoid primates over the last 35 Ma. Phylogenetically informed regression analyses of semicircular canal size reveal three important aspects of anthropoid locomotor evolution: (i) the earliest anthropoid primates engaged in relatively slow locomotor behaviours, suggesting that this was the basal anthropoid pattern; (ii) platyrrhines from the Miocene of South America were relatively agile compared with earlier anthropoids; and (iii) while the last common ancestor of cercopithecoids and hominoids likely was relatively slow like earlier stem catarrhines, the results suggest that the basal crown catarrhine may have been a relatively agile animal. The latter scenario would indicate that hominoids of the later Miocene secondarily derived their relatively slow locomotor repertoires.  相似文献   

17.
The primate distal humerus has been used both in phylogenetic reconstruction and in assessing locomotor and postural adaptations. This study uses an allometric approach to predict locomotor patterns of extant primates regardless of phylogenetic position. By showing the relationship between form and function in living primate taxa it will be possible to use this data set to predict locomotor behavior of extinct primates. Several linear measurements were taken from the distal humerus of 71 extant primate species (anthropoids and prosimians). Allometric regressions of each measurement were performed with mandibular M2 area as a surrogate for body size. These measurements were used to determine if significant differences in distal humerus morphology exist among locomotor groups. The results were then used to test several hypotheses about the relationship between humeral form and function. For example, the hypothesis that suspensory primates have a large medial epicondyle is confirmed; the hypothesis that terrestrial quadrupeds have a deep olecranon fossa could not be confirmed with quantitative data. In addition to this hypothesis testing, the residuals from the allometric regressions of the humeral measurements were used in a discriminant functions analysis to estimate locomotor behavior from distal humerus morphology. The discriminant functions analysis correctly reclassified 64/71 (90%) species.  相似文献   

18.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

19.
Mammals with more rapid and agile locomotion have larger semicircular canals relative to body mass than species that move more slowly. Measurements of semicircular canals in extant mammals with known locomotor behaviours can provide a basis for testing hypotheses about locomotion in fossil primates that is independent of postcranial remains, and a means of reconstructing locomotor behaviour in species known only from cranial material. Semicircular canal radii were measured using ultra high resolution X-ray CT data for 9 stem primates (“plesiadapiforms”; n = 11), 7 adapoids (n = 12), 4 omomyoids (n = 5), and the possible omomyoid Rooneyia viejaensis (n = 1). These were compared with a modern sample (210 species including 91 primates) with known locomotor behaviours. The predicted locomotor agilities for extinct primates generally follow expectations based on known postcrania for those taxa. “Plesiadapiforms” and adapids have relatively small semicircular canals, suggesting they practiced less agile locomotion than other fossil primates in the sample, which is consistent with reconstructions of them as less specialized for leaping. The derived notharctid adapoids (excluding Cantius) and all omomyoids sampled have relatively larger semicircular canals, suggesting that they were more agile, with Microchoerus in particular being reconstructed as having had very jerky locomotion with relatively high magnitude accelerations of the head. Rooneyia viejaensis is reconstructed as having been similarly agile to omomyids and derived notharctid adapoids, which suggests that when postcranial material is found for this species it will exhibit features for some leaping behaviour, or for a locomotor mode requiring a similar degree of agility.  相似文献   

20.
A new relatively large duck, Chenoanas deserta gen. et sp. nov. from the Middle Miocene of the Sharga locality, which is morphologically intermediate between the extant genera Chenonetta and Tachyeres, is described. The diversity of Early and Middle Miocene ducks is discussed. It is noted that some Middle Miocene duck remains are incorrectly referred to the genus Mionetta. The distribution of morphological characters of the humerus in Neogene and extant ducks shows that the present day diversity of ducks apparently results from extinction of some taxa which were formed in the Oligocene-Early Miocene. The distribution of morphological characters in the evolution of diving ducks is evidence that not only the formation of different morphotypes but also so-called ??evolutionary maturation?? of taxa also explains the modern diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号