首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

2.
Fragile X syndrome is one of the most frequent causes of mental retardation. Since the phenotype in this syndrome is quite variable, clinical diagnosis is not easy and molecular laboratory diagnosis is necessary. Usually DNA from blood cells is used in molecular tests to detect the fragile X mutation which is characterized by an unstable expansion of a CGG repeat in the fragile X mental retardation gene (FMR1). In the present study, blood and buccal cells of 53 mentally retarded patients were molecularly analyzed for FMR1 mutation by PCR. Our data revealed that DNA extraction from buccal cells is a useful noninvasive alternative in the screening of the FMR1 mutation among mentally retarded males.  相似文献   

3.
Pre‐mutation CGG repeat expansions (55–200 CGG repeats; pre‐CGG) within the fragile‐X mental retardation 1 (FMR1) gene cause fragile‐X‐associated tremor/ataxia syndrome in humans. Defects in neuronal morphology, early migration, and electrophysiological activity have been described despite appreciable expression of fragile‐X mental retardation protein (FMRP) in a pre‐CGG knock‐in (KI) mouse model. The triggers that initiate and promote pre‐CGG neuronal dysfunction are not understood. The absence of FMRP in a Drosophila model of fragile‐X syndrome was shown to increase axonal transport of mitochondria. In this study, we show that dissociated hippocampal neuronal culture from pre‐CGG KI mice (average 170 CGG repeats) express 42.6% of the FMRP levels and 3.8‐fold higher Fmr1 mRNA than that measured in wild‐type neurons at 4 days in vitro. Pre‐CGG hippocampal neurons show abnormalities in the number, mobility, and metabolic function of mitochondria at this early stage of differentiation. Pre‐CGG hippocampal neurites contained significantly fewer mitochondria and greatly reduced mitochondria mobility. In addition, pre‐CGG neurons had higher rates of basal oxygen consumption and proton leak. We conclude that deficits in mitochondrial trafficking and metabolic function occur despite the presence of appreciable FMRP expression and may contribute to the early pathophysiology in pre‐CGG carriers and to the risk of developing clinical fragile‐X‐associated tremor/ataxia syndrome.  相似文献   

4.
5.
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5′ un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.  相似文献   

6.
脆性X综合征(fragile X syndrome, FXS)是最常见的遗传性智力障碍疾病,主要是由于X染色体上脆性X智力低下基因1(fragile X-mental retardation gene 1, FMR1)5’端非翻译区CGG三核苷酸的重复扩增及其相邻部位CpG岛的异常甲基化而导致其编码产物脆性X智力低下蛋白(fragile X mental retardation protein, FMRP)的缺失引起。目前,基因诊断已成为FXS诊断的金标准,但临床治疗仍缺乏特异性。本文首先介绍了FMRP的结构与功能,剖析了FXS的致病机制,然后阐述了FXS中与FMRP表达相关的信号转导途径,深入探讨并总结了靶向干预FXS中信号通路、基因编辑逆转FMR1沉默以及靶向降解FXS异常表达蛋白的治疗策略。  相似文献   

7.
A fragile gene     
Fragile X syndrome is the most common cause of inherited mental retardation in humans. The fragile X gene (FMR1) has been cloned and the mutation causing the disease is known. The molecular basis of the disease is an expansion of a trinucleotide repeat sequence (CGG) present in the first exon within the 5′ untranslated region of the FMR1 gene. Affected individuals have repeat CGG sequences of above 200. As a result the gene is not producing protein. It has been shown that the FMR1 protein has RNA binding activity, but the function of this RNA binding activity is not known. The timing and mechanism of repeat amplification are not yet understood. An animal model for fragile X syndrome has been generated, which can be used to study the clinical and biochemical abnormalities caused by absence of FMR1 protein product.  相似文献   

8.
9.
Molecular screening programs in mentally retarded individuals have been performed in several populations worldwide. One finding has been an excess of FMR1 intermediate alleles in a population with learning difficulties. However, other published reports with similar characteristics did not corroborate those previous results. In order to contribute additional data from our population, we studied 563 patients affected with nonspecific mental retardation (MRX) that did not present a CGG expansion in the FMR1 gene and 208 individuals as a control population. Forty MRX patients presented alleles within the intermediate range. Among them, one case showed a pattern of expression of the FMR1 protein (FMRP) concordant with a fragile X syndrome case with an intermediate allele/full mutation mosaicism, although it was not detected by Southern blot analysis. Statistical analysis was performed again showing no statistically significant difference regarding the intermediate allele frequency in the MRX and control populations. This finding is in agreement with the hypothesis that the incidence of intermediate FMR1 alleles in MRX populations does not seem to be higher than in control populations, and it emphasizes the importance of FMRP detection as a diagnostic tool for fragile X syndrome.  相似文献   

10.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene that lead to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. The recent observations of unexpected phenotypes in some carriers of fragile X premutations suggest a pathological role, in these individuals, of an abnormal FMR1 mRNA. FMRP was recently shown to interact preferentially with mRNAs containing a G quartet structure. Mouse and Drosophila models are used to decipher the function of FMRP, which was found to inhibit translation of some mRNA targets, but may be stimulatory in other cases. Proteins interacting with FMRP have been identified, and suggest a link with the Rac1 GTPase pathway that is important in neuronal maturation. Recent advances also include identification of other genes implicated in X-linked mental retardation.  相似文献   

11.
The fragile X syndrome is an X-linked mental retardation disorder caused by an expanded CGG repeat in the first exon of the fragile X mental retardation (FMR1) gene. Its frequency, X-linked inheritance, and consequences for relatives all prompt for diagnosis of this disorder on a large scale in all affected individuals. A screening for the fragile X syndrome has been conducted in a representative sample of 3,352 individuals in schools and institutes for the mentally retarded in the southwestern Netherlands, by use of a brief physical examination and the DNA test. The attitudes and reactions of (non)consenting parents/guardians were studied by (pre- and posttest) questionnaires. A total of 2,189 individuals (65%) were eligible for testing, since they had no valid diagnosis, cerebral palsy, or a previous test for the FMR1 gene mutation. Seventy percent (1,531/2,189) of the parents/guardians consented to testing. Besides 32 previously diagnosed fragile X patients, 11 new patients (9 males and 2 females) were diagnosed. Scoring of physical features was effective in preselection, especially for males (sensitivity .91 and specificity .92). Major motives to participate in the screening were the wish to obtain a diagnosis (82%), the hereditary implications (80%), and the support of research into mental retardation (81%). Thirty-four percent of the parents/guardians will seek additional diagnostic workup after exclusion of the fragile X syndrome. The prevalence of the fragile X syndrome was estimated at 1/ 6,045 for males (95% confidence interval 1/9,981-1/ 3,851). On the basis of the actual number of diagnosed cases in the Netherlands, it is estimated that >50% of the fragile X cases are undiagnosed at present.  相似文献   

12.
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.  相似文献   

13.
To date, the identification of patients and carriers of the fragile X syndrome has been carried out by DNA analysis by means of the polymerase chain reaction and Southern blot analysis. This direct DNA analysis allows both the size of the CGG repeat and methylation status of the FMR1 gene to be determined. We have recently presented a rapid antibody test on blood smears based on the presence of FMRP, the protein product of the FMR1 gene, in lymphocytes from normal individuals and the absence of FMRP in lymphocytes from patients. Here, we have tested the diagnostic value of this new technique by studying FMRP expression in 173 blood smears from normal individuals and fragile X patients. The diagnostic power of the antibody test is “perfect” for males, whereas the results are less specific for females. Received: 25 October 1996 / Revised: 21 November 1996  相似文献   

14.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene leading to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. To study the physiological function of the FMR1 protein, mouse and Drosophila models have been developed. The loss-of-function mouse model shows slightly enlarged testes, a subtle behavioral phenotype, and discrete anomalies of dendrite spines similar to those observed in brains of patients. Studies in Drosophila indicate that FXMR plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of FXR mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

15.
16.
17.
Recent evidence suggests that early changes in postural control may be discernible among females with premutation expansions (55–200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene at risk of developing fragile X‐associated tremor ataxia syndrome (FXTAS). Cerebellar dysfunction is well described in males and females with FXTAS, yet the interrelationships between cerebellar volume, CGG repeat length, FMR1 messenger RNA (mRNA) levels and changes in postural control remain unknown. This study examined postural sway during standing in a cohort of 22 males with the FMR1 premutation (ages 26–80) and 24 matched controls (ages 26–77). The influence of cerebellar volume, CGG repeat length and FMR1 mRNA levels on postural sway was explored using multiple linear regression. The results provide preliminary evidence that increasing CGG repeat length and decreasing cerebellar volume were associated with greater postural sway among premutation males. The relationship between CGG repeat length and postural sway was mediated by a negative association between CGG repeat size and cerebellar volume. While FMR1 mRNA levels were significantly elevated in the premutation group and correlated with CGG repeat length, FMR1 mRNA levels were not significantly associated with postural sway scores. These findings show for the first time that greater postural sway among males with the FMR1 premutation may reflect CGG repeat‐mediated disruption in vulnerable cerebellar circuits implicated in postural control. However, longitudinal studies in larger samples are required to confirm whether the relationships between cerebellar volume, CGG repeat length and postural sway indicate greater risk for neurological decline.  相似文献   

18.
The Fragile X mental retardation gene (FMR1) contains a polymorphic trinucleotide CGG repeat in the 5' untranslated region (UTR) of the FMR1 messenger. We have characterized three lymphoblastoid cell lines derived from unrelated male carriers of a premutation that overexpress FMR1 mRNA and show reduced FMRP level compared to normal cells. The analysis of polysomes/mRNPs distribution of mRNA in the cell lines with a premutation shows that the polysomal association of FMR1 mRNA, which is high in normal cells, becomes progressively lower with increasing CGG repeat expansion. In addition, we could detect a very low level of FMR1 mRNA in a lymphoblastoid cell line from a patient with a full mutation. In this case, FMR1 mRNA is not at all associated with polysomes, in agreement with the complete absence of FMRP. The impairment of FMR1 mRNA translation in patients with the Fragile X syndrome with FMR1 premutation is the cause of the lower FMRP levels that leads to the clinical involvement.  相似文献   

19.
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5′-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号