首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of photoprotection mechanisms to a short-term water stress period followed by rewatering, to simulate common episodic water stress periods occurring in Mediterranean areas, was studied in 10 potted plants representative of different growth forms and leaf habits. During water stress and recovery, relative water content, stomatal conductance, leaf pigment composition, electron transport rates, maximum quantum efficiency of PSII photochemistry (Fv/Fm), thermal energy dissipation and photorespiration rates (Pr) were determined. All the species analyzed proved to be strongly resistant to photoinactivation of PSII under the imposed water stress conditions. The responses of the analyzed parameters did not differ largely among species, suggesting that Mediterranean plants have similar needs and capacity for photoprotection under episodic water stress periods regardless of their growth form and leaf habit. A general pattern of photoprotection emerged, consisting in maintenance or increase of Pr at mild stress and the increase of the thermal energy dissipation at more severe stress. Adjustments in pigment pool sizes were not an important short-term response to water stress. The increase of thermal energy dissipation because of water stress depended mostly on the de-epoxidation state of xanthophylls, although the slope and kinetics of such relationship strongly differed among species, suggesting species-dependent additional roles of de-epoxidated xanthophylls. Also, small decreases in Fv/Fm at predawn during water stress were strongly correlated with maintained de-epoxidation of the xanthophylls cycle, suggesting that a form of xanthophyll-dependent sustained photoprotection was developed during short-term water stress not only in evergreen but also in semideciduous and annual species.  相似文献   

2.
We studied carotenoid composition and chlorophyll fluorescence in two-year-old needles from Siberian spruce (Picea obovata (L.) Karst.), Siberian fir (Abies sibirica L.), and common juniper (Juniperus communis L.). The highest values of maximum PSII photochemical activity (F v/F m) equaling 0.82–0.85 were observed in July–September. The decrease in F v/F m in December–March was more pronounced in juniper (down to 0.15) than in spruce and fir (0.45–0.50). In May, we observed a nearly complete recovery in maximum PSII photochemical activity in fir and spruce (0.72–0.77), while in juniper, the F v/F m value was notably lower (0.65–0.67). The amount of thermal dissipation of energy absorbed by PSII LHC did not exceed 30% in summer and equaled 60–90% in winter and early spring. The carotenoid pool consisted mainly of xanthophylls, among which lutein (70%), neoxanthin (7–10%), and a violaxanthin cycle (VXC) component — violaxanthin (3–15%) were constantly present. The accumulation of two other VXC pigments—zeaxanthin and antheraxanthin, was noted in December–March. In July, these xanthophylls were not identified. We discovered a direct connection between VXC pigment de-epoxidation level and light energy thermal dissipation in boreal conifer leaves. Such association reflects the non-species-specific character of the mechanism for quenching zeaxanthin-dependent nonphotochemical chlorophyll fluorescence in PSII LHC in winter and spring.  相似文献   

3.
Aim Conifers are invasive species in many parts of the world, especially in the Southern Hemisphere. There are many introduced conifers in Europe, but their status as alien species is poorly documented. We conducted a comprehensive literature review to ascertain the extent to which alien conifers can be considered invasive. Location Europe. Methods We reviewed the historical record of alien conifer invasion in Europe (i.e. species with a native range outside the continental boundaries of Europe) by screening the DAISIE database and the ISI Web of Science. Results According to DAISIE, there are 54 alien conifer species in Europe. Pseudotsuga menziesii is the species recorded as naturalized in the most countries (12) and the UK is the country with the most naturalized species (18). Thirty‐seven of these conifers have been studied, to some extent, in a total of 131 papers (212 records). Nevertheless, only a few papers have investigated aspects related to biological invasions. In fact, the species are not referred to as alien by the authors in more than half of the papers (66%). Twenty‐five per cent of the papers have investigated plant traits, 46% are about biotic and abiotic factors influencing tree performance and 29% deal with ecological and economic impacts. Most papers are related to entomology, dealing with natural enemies affecting the alien conifers. Main conclusions Scientists have not yet perceived alien conifers in Europe as problematic species. Moreover, the low introduction effort, long lag‐time since plantation and phylogenetic closeness between alien and native conifers are possible reasons for their low expansion in Europe to date. From a management point of view, careful observations of sites with alien conifers is necessary to watch for new invasions. From a scientific perspective, thorough analyses of the extent that introduction, rates of naturalization and biogeographical differences influence invasive spread between the two hemispheres will prove timely.  相似文献   

4.
Three plant xanthophylls are components of the xanthophyll cycle in which, upon exposure of leaves to high light, the enzyme violaxanthin de-epoxidase (VDE) transforms violaxanthin into zeaxanthin via the intermediate antheraxanthin. Previous work () showed that xanthophylls are bound to Lhc proteins and that substitution of violaxanthin with zeaxanthin induces conformational changes and fluorescence quenching by thermal dissipation. We have analyzed the efficiency of different Lhc proteins to exchange violaxanthin with zeaxanthin both in vivo and in vitro. Light stress of Zea mays leaves activates VDE, and the newly formed zeaxanthin is found primarily in CP26 and CP24, whereas other Lhc proteins show a lower exchange capacity. The de-epoxidation system has been reconstituted in vitro by using recombinant Lhc proteins, recombinant VDE, and monogalactosyl diacylglycerol (MGDG) to determine the intrinsic capacity for violaxanthin-to-zeaxanthin exchange of individual Lhc gene products. Again, CP26 was the most efficient in xanthophyll exchange. Biochemical and spectroscopic analysis of individual Lhc proteins after de-epoxidation in vitro showed that xanthophyll exchange occurs at the L2-binding site. Xanthophyll exchange depends on low pH, implying that access to the binding site is controlled by a conformational change via lumenal pH. These findings suggest that the xanthophyll cycle participates in a signal transduction system acting in the modulation of light harvesting versus thermal dissipation in the antenna system of higher plants.  相似文献   

5.
The effects of environmental stresses on photosynthetic responses, ascorbate levels and pigment composition were investigated in samples of Parmelia quercina (Willd.) Vainio from control and polluted regions of the northern Castellón area (Valencia, Spain). In response to sustained pollutant stress in the field, lichen thalli had closed PSII traps and exhibited lower rates of electron transport and non-radiative energy dissipation. The xanthophyll concentration was not affected by exposure to atmospheric pollutants. The ascorbate concentration was lower in samples exposed to ambient air pollutants compared to control thalli. Ascorbate feeding of thalli from polluted sites stimulated electron flow, photochemical quenching and non-radiative energy dissipation. Additionally, ascorbate feeding enhances the de-epoxidation state of the xanthophyll pool in polluted thalli. The partial recovery for non-radiative energy dissipation was presumably due to the interaction between the increased thylakoid pH gradient and de-epoxidized xanthophylls. Furthermore, ascorbate feeding decreased photon excess in thalli from polluted sites owing to the stimulation of linear electron flow and non-radiative energy dissipation. The present study suggests that atmospheric pollutants, besides their intrinsic toxicity, put on an additional burden by hampering the operation of photoprotective mechanisms.  相似文献   

6.
The presence of an acidic lumen and the xanthophylls, zeaxanthin and antheraxanthin, are minimal requirements for induction of non-radiative dissipation of energy in the pigment bed of Photosystem II. We recently reported that ascorbate, which is required for formation for these xanthophylls, also can mediate the needed lumen acidity through the Mehler-peroxidase reaction [Neubauer and Yamamoto (1992) Plant Physiol 99: 1354–1361]. It is demonstrated that in non-CO2-fixing intact chloroplasts and thylakoids of Lactuca sativa, L. c.v. Romaine, the ascorbate available to support de-epoxidase activity is influenced by membrane barriers and the ascorbate-consuming Mehler-peroxidase reaction. In intact chloroplasts, this results in biphasic kinetic behavior for light-induced de-epoxidation. The initial relatively high activity is due to ascorbate preloaded into the thylakoid before light-induction and the terminal low activity due to limiting ascorbate from the effects of chloroplast membranes barriers and a light-dependent process. A five-fold difference between the initial and final activities was observed for light-induced de-epoxidation in chloroplasts pre-incubated with 120 mM ascorbate for 40 min. The light-dependent activity is ascribed to the competitive use of ascorbic acid by ascorbate peroxidase in the Mehler-peroxidase reaction. Thus, stimulating ascorbic peroxidase with H2O2 transiently inhibited de-epoxidase activity and concomitantly increased photochemical quenching. Also, the effects inhibiting ascorbate peroxidase with KCN, and the KM values for ascorbate peroxidase and violaxanthin de-epoxidase of 0.36 and 3.1 mM, respectively, support this conclusion. These results indicate that regulation of xanthophyll-dependent non-radiative energy dissipation in the pigment bed of Photosystem II is modulated not only by lumen acidification but also by ascorbate availability.Abbreviations APO ascorbate peroxidase - MP Mehler ascorbate-peroxidase - NIG nigericin - NPQ non-photochemical quenching - Fo dark fluorescence - F fluorescence at any time - FM maximal fluorescence of the (dark) non-energized state - FM maximal fluorescence of the energized state - qP coefficient for photochemical fluorescence quenching - VDE violaxanthin de-epoxidase - k first-order rate constant for violaxanthin de-epoxidase activity  相似文献   

7.
Characterization of EST-SSRs in loblolly pine and spruce   总被引:3,自引:0,他引:3  
In the first large study of conifer expressed sequence tag-simple sequence repeats (EST-SSRs), two large conifer EST databases were characterized for EST-SSRs. One database was from “interior spruce” (white and Engelmann spruce in Southern British Columbia) and Sitka spruce, while the other was from loblolly pine. We found 475 and 629 unique EST-SSRs in loblolly pine and spruce, respectively. 3′ ESTs contained 14% more SSRs than 5′ EST reads in loblolly pine and 41% more in spruce. Conifer EST-SSRs differed conspicuously from angiosperm EST-SSRs in several aspects. EST-SSRs were considerably less frequent in conifers (one EST-SSR every ∼50 kb) than in angiosperms (one EST-SSR every ∼20 kb). Dinucleotide repeats were the most abundant repeat class in conifers, while in angiosperms, trinucleotides were most common. Finally, the AT motif was the dominant motif recovered in both conifer species, whereas AG was the most common dinucleotide repeat in angiosperms. Also, as these EST-SSRs in conifers could be developed into useful genetic markers, our work demonstrates the value of large-scale EST sequencing projects for in-silico approaches for marker development.  相似文献   

8.
Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) is distributed from Mexico to the Maritime Antarctic. It grows forming inconspicuous populations in humid and cold sites along high elevations in the Andes Mountains. Mediterranean Andes is characterized by a wider oscillation of diurnal and seasonal temperature, while the Maritime Antarctic is characterized by permanent low temperatures. Both places may experience high irradiance during sunny days (reaching up to 2,000 μmol photons m−2 s−1); however, the frequency of sunny days in the Maritime Antarctica is significantly lower (less than 20% of the whole growing season). We study whether acclimation to each environment relies on different photoprotective mechanisms. The Andean ecotype that has a longer growing season and a higher light integral reduces light absorption by the development of smaller chloroplasts with lower stacking granum area and down-regulation of Lhcb2. It also enhances the dissipation of the excess of absorbed energy by higher level of de-epoxidation of xanthophylls pool. On the other hand, the Antarctic ecotype which has developed under a shorter growing season, with lower total irradiance and continuous low temperatures, maximizes photochemical process even at low temperatures and it has a lower light-harvesting/core complex ratio and higher level of photoprotection supplied by an unusually high β-carotene and xanthophylls cycle pool. It resembles a well full light acclimated plant, probably due to higher excitation pressure imposed by lower temperature even at moderate irradiance. It is suggested that the biochemical plasticity of this species, highlighted by the development of these different strategies, is essential to cope successfully with these particular environments.  相似文献   

9.
Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress.  相似文献   

10.
The light-induced de-epoxidation of xanthophylls is an important photoprotective mechanism in plants and algae. Exposure to ultraviolet radiation (UVR, 280–400 nm) can change the extent of xanthophyll de-epoxidation, but different types of responses have been reported. The de-epoxidation of violaxanthin (V) to zeaxanthin (Z), via the intermediate antheraxanthin, during exposure to UVR and photosynthetically active radiation (PAR, 400–700 nm) was studied in the marine picoplankter Nannochloropsis gaditana (Eustigmatophyceae) Lubián. Exposures used a filtered xenon lamp, which gives PAR and UVR similar to natural proportions. Exposure to UVR plus PAR increased de-epoxidation compared with under PAR alone. In addition, de-epoxidation increased with the irradiance and with the inclusion of shorter wavelengths in the spectrum. The spectral dependence of light-induced de-epoxidation under UVR and PAR exposure was well described by a model of epoxidation state (EPS) employing a biological weighting function (BWF). This model fit measured EPS in eight spectral treatments using Schott long pass filters, with six intensities for each filter, with a R2 = 0.90. The model predicts that 56% of violaxanthin is de-epoxidated, of which UVR can induce as much as 24%. The BWF for EPS was similar in shape to the BWF for UVR inhibition of photosynthetic carbon assimilation in N. gaditana but with about 22-fold lower effectiveness. These results demonstrate a connection between the presence of de-epoxidated Z and the inhibition under UVR exposures in N. gaditana . Nevertheless, they also indicate that de-epoxidation is insufficient to prevent UVR inhibition in this species.  相似文献   

11.
Glutamine synthetase (GS) localized in the chloroplasts, GS2, is a key enzyme in the assimilation of ammonia (NH3) produced from the photorespiration pathway in angiosperms, but it is absent from some coniferous species belonging to Pinaceae such as Pinus. We examined whether the absence of GS2 is common in conifers (Pinidae) and also addressed the question of whether assimilation efficiency of photorespiratory NH3 differs between conifers that may potentially lack GS2 and angiosperms. Search of the expressed sequence tag database of Cryptomeria japonica, a conifer in Cupressaceae, and immunoblotting analyses of leaf GS proteins of 13 species from all family members in Pinidae revealed that all tested conifers exhibited only GS1 isoforms. We compared leaf NH3 compensation point (γNH3) and the increments in leaf ammonium content per unit photorespiratory activity (NH3 leakiness), i.e. inverse measures of the assimilation efficiency, between conifers (C. japonica and Pinus densiflora) and angiosperms (Phaseolus vulgaris and two Populus species). Both γNH3 and NH3 leakiness were higher in the two conifers than in the three angiosperms tested. Thus, we concluded that the absence of GS2 is common in conifers, and assimilation efficiency of photorespiratory NH3 is intrinsically lower in conifer leaves than in angiosperm leaves. These results imply that acquisition of GS2 in land plants is an adaptive mechanism for efficient NH3 assimilation under photorespiratory environments.  相似文献   

12.
Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference in seasonal xanthophyll pigment content (V+A+Z g(-1) leaf dry mass) or LMWA between winter-red and winter-green species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn F(v)/F(m) and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F'(v)/F'(m)) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non-photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter.  相似文献   

13.
Sapwood respiration often declines towards the sapwood/heartwood boundary, but it is not known if parenchyma metabolic activity declines with cell age. We measured sapwood respiration in five temperate species (sapwood age range of 5-64 years) and expressed respiration on a live cell basis by quantifying living parenchyma. We found no effect of parenchyma age on respiration in two conifers (Pinus strobus, Tsuga canadensis), both of which had significant amounts of dead parenchyma in the sapwood. In angiosperms (Acer rubrum, Fraxinus americana, Quercus rubra), both bulk tissue and live cell respiration were reduced by about one-half in the oldest relative to the youngest sapwood, and all sapwood parenchyma remained alive. Conifers and angiosperms had similar bulk tissue respiration despite a smaller proportion of parenchyma in conifers (5% versus 15-25% in angiosperms), such that conifer parenchyma respired at rates about three times those of angiosperms. The fact that 5-year-old parenchyma cells respired at the same rate as 25-year-old cells in conifers suggests that there is no inherent or intrinsic decline in respiration as a result of cellular ageing. In contrast, it is not known whether differences observed in cellular respiration rates of angiosperms are a function of age per se, or whether active regulation of metabolic rate or positional effects (e.g. proximity to resources and/or hormones) could be the cause of reduced respiration in older sapwood.  相似文献   

14.
Photoinactivation of photosystem II (PSII) and energy dissipation at low leaf temperatures were investigated in leaves of glasshouse-grown grapevine ( Vitis vinifera L. cv. Riesling). At low temperatures (< 15°C), photosynthetic rates of CO2 assimilation were reduced. However, despite a significant increase in the amount of light excessive to that required by photosynthesis, grapevine leaves maintained high intrinsic quantum efficiencies of PSII ( F v/ F m) and were highly resistant to photoinactivation compared to other species. Non-photochemical energy dissipation involving xanthophylls and fast D1 repair were the main protective processes reducing the 'gross' rate of photoinactivation and the 'net' rate of photoinactivation, respectively. We developed an improved method of energy dissipation analysis that revealed up to 75% of absorbed light is dissipated thermally via pH- and xanthophyll-mediated non-photochemical quenching at low temperatures (5–15°C) and moderate (800 µmol quanta m−2 s−1) light. Up to 20% of the energy flux contributing to electron transport was dissipated via photorespiration when taking into account temperature-dependent mesophyll conductance; however, this flux used in photorespiration was only a relatively small amount of the total absorbed light energy. Photoreduction of O2 at photosystem I (PSI) and subsequent superoxide detoxification (water-water cycle) was more sensitive to inhibition by low temperature than photorespiration. Therefore the water-water cycle represents a negligibly small energy sink below 15°C, irrespective of mesophyll conductance.  相似文献   

15.
After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4–0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.  相似文献   

16.
Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.  相似文献   

17.
Overwintering plants face a pronounced imbalance between light capture and use of that excitation for photosynthesis. In response, plants upregulate thermal dissipation, with concomitant reductions in photochemical efficiency, in a process characterized by a slow recovery upon warming. These sustained depressions of photochemical efficiency are termed winter photoinhibition (WPI) here. WPI has been extensively studied in conifers and in few overwintering crops, but other plant species have received less attention. Furthermore, the literature shows some controversies about the association of WPI with xanthophylls and the environmental conditions that control xanthophylls conversion. To overview current knowledge and identify knowledge gaps on WPI mechanisms, we performed a comprehensive meta‐analysis of literature published over the period 1991–2011. All publications containing measurements of Fv/Fm for a cold period and a corresponding warm control were included in our final database of 190 studies on 162 species. WPI was estimated as the relative decrease in Fv/Fm. High WPI was always accompanied by a high (A + Z)/(V + A + Z). Activation of lasting WPI was directly related to air temperature, with a threshold of around 0°C. Tropical plants presented earlier (at a temperature of >0°C) and higher WPI than non‐tropical plants. We conclude that (1) activation of a xanthophyll‐dependent mechanism of WPI is a requisite for maintaining photosynthetic structures at sub‐zero temperatures, while (2) absence (or low levels) of WPI is not necessarily related to low (A + Z)/(V + A + Z); and (3) the air temperature that triggers lasting WPI, and the maximum level of WPI, do not depend on plant growth habit or bioclimatic origin of species.  相似文献   

18.
Although plant species with either animal or wind pollination modes are widespread and usually sympatric in nature, the degree of pollen interference from wind‐pollinated species on animal‐pollinated species remains little known. Conifer trees generally release a huge number of pollen grains into the air, floating into our noses and sometimes causing an allergic response. Here we document airborne pollen from two conifers (Pinus densata Mast. and Picea likiangensis (Franch.) E. Pritz.) deposited on the stigmas of eight coflowering insect‐pollinated angiosperms over 2 years in a mountainous forest community, in Shangri‐La, southwest China. Pollen density in the air as well as conifer pollen deposited onto stigmas at short and long distances from the airborne pollen source were quantified. Our results showed that conifer pollen as a proportion of total stigmatic pollen loads in the insect‐pollinated plants varied from 0.16% to 8.67% (3.16% ± 0.41%, n = 735) in 2016 and 0.66% to 5.38% (2.87% ± 0.86%, n = 180), and pollen quantity per unit area was closely related to that of airborne pollen in the air. Conifer pollen deposition on stigmas of insect‐pollinated species decreased greatly with increased distance from the pollen source. In the 10 plant species flowering in summer after conifer pollen release had finished, heterospecific pollen deposited on these stigmas came mainly from other insect‐pollinated flowers, with little contribution from airborne conifer pollen. The results indicate that there might be little interference with coflowering angiosperms by airborne pollen from dominant conifers in natural communities.  相似文献   

19.
The response of Norway spruce saplings (Picea abies [L.] Karst.) was monitored continuously during short-term exposure (10 days) to high irradiance (HI; 1000mumolm(-2)s(-1)). Compared with plants acclimated to low irradiance (100mumolm(-2)s(-1)), plants after HI exposure were characterized by a significantly reduced CO(2) assimilation rate throughout the light response curve. Pigment contents varied only slightly during HI exposure, but a rapid and strong response was observed in xanthophyll cycle activity, particularly within the first 3 days of the HI treatment. Both violaxanthin convertibility under HI and the amount of zeaxanthin pool sustained in darkness increased markedly under HI conditions. These changes were accompanied by an enhanced non-radiative dissipation of absorbed light energy (NRD) and the acceleration of induction of both NRD and de-epoxidation of the xanthophyll cycle pigments. We found a strong negative linear correlation between the amount of sustained de-epoxidized xanthophylls and the photosystem II (PSII) photochemical efficiency (F(V)/F(M)), indicating photoprotective down-regulation of the PSII function. Recovery of F(V)/F(M) at the end of the HI treatment revealed that Norway spruce was able to cope with a 10-fold elevated irradiance due particularly to an efficient NRD within the PSII antenna that was associated with enhanced violaxanthin convertibility and a light-induced accumulation of zeaxanthin that persisted in darkness.  相似文献   

20.
Chemosystematics is a common tool in systematics and taxonomy of extant plants. Terpenoids have been found to be especially valuable for chemosystematic investigations of conifers. A review of data in the extensive literature revealed some characteristic distribution patterns of sesqui-, di-, and triterpenoids in extant conifer families. The numerous terpenoids can be assigned to approximately 40 sesquiterpenoid, 17 diterpenoid, and only a few triterpenoid structural classes. Some of these terpenoid classes (e.g., cadinanes, humulanes, labdanes, pimaranes) are unspecific and distributed among all conifers. Other structural classes occur in certain clusters of families (e.g., totaranes in Podocarpaceae, Taxodiaceae, and Cupressaceae s.str.) or were restricted to species of only one conifer family (e.g., cuparanes in Cupressaceae s.str.). Cupressaceae s.str. and Taxodiaceae show great similarities in their terpenoid composition (cedranes, thujopsanes) but can be separated by the occurrence of some sesquiterpenoids (cuparanes, widdranes), which were hitherto known only in Cupressaceae s.str. This supports a monophyletic clade of Cupressaceae s.str. within the major Taxodiaceae/Cupressaceae lineage (= Cupressaceae s.l.). Pinaceae differ from the other conifer families because they commonly lack several diterpenoid classes (phenolic abietanes, tetracyclic diterpenoids) and because they contain some distinct sesquiterpenoids (longicyclanes, sativanes), diterpenoids (cembranes), and triterpenoids (serratanes, lanostanes). With the exception of diterpenoid alkaloids (taxanes), Taxaceae contain terpenoids common in the other conifer families. This supports their inclusion as a separate family in the major conifer clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号