首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of lung injury on pulmonary recruitment are incompletely understood. X-ray computed tomography (CT) has been a valuable tool in assessing changes in recruitment during lung injury. With the development of preclinical CT scanners designed for thoracic imaging in rodents, it is possible to acquire high-resolution images during the evolution of a pulmonary injury in living mice. We quantitatively assessed changes in recruitment caused by intratracheal bleomycin at 1 and 3 wk after administration using micro-CT in 129S6/SvEvTac mice. Twenty female mice were administered 2.5 U of bleomycin or saline and imaged with micro-CT at end inspiration and end expiration. Mice were extubated and allowed to recover from anesthesia and then reevaluated in vivo for quasi-static compliance measurements, followed by harvesting of the lungs for collagen analysis and histology. CT images were converted to histograms and analyzed for mean lung attenuation (MLA). MLA was significantly greater for bleomycin-exposed mice at week 1 for both inspiration (P<0.0047) and exhalation (P<0.0377) but was not significantly different for week 3 bleomycin-exposed mice. However, week 3 bleomycin-exposed mice did display significant increases in MLA shift from expiration to inspiration compared with either group of control mice (P<0.005), suggesting increased lung recruitment at this time point. Week 1 bleomycin-exposed mice displayed normal shifts in MLA with inspiration, suggesting normal lung recruitment despite significant radiographic and histological changes. Lung alveolar recruitment is preserved in a mouse model of bleomycin-induced parenchymal injury despite significant changes in radiographic and physiological parameters.  相似文献   

2.
Data from the in vivo incorporation of [3H]valine into fractions of elastin obtained from rat or mouse lung suggest that postnatal lung elastin synthesis occurs predominantly in the first 1 to 2 weeks of life. Very little [3H]valine was incorporated into lung elastin obtained from adult animals. When lung elastin from neonatal mice was radiochemically labelled with [14C]lysine as a single pulse, it was observed that the specific activity of the elastin expressed as the total dpm values as 14C per mg was not significantly altered over a 6 month period. Elastin appears to turn over very slowly in mouse lung with half-life best estimated in years.  相似文献   

3.
Lung macrophages are the first line of defense against inhaled xenobiotics. They are able to accumulate airborne particulates as well as having metabolic capability. They may thus be sensitive indicator cells for detecting inhalation exposure to environmental mutagens. Their usefulness as a short-term in vivo genotoxic assay has not, however, been adequately explored. We have systematically investigated the feasibility of developing a lung macrophage chromosome-aberration assay. It was found that with different types of spindle-binding chemicals (vinblastine and vincristine), and with improved harvesting procedures, an adequate number of metaphase cells can be collected from mice and Chinese hamsters. The chromosome aberration frequencies in macrophages from control mice and Chinese hamsters were found to be 1.2 +/- 2.3 and 0.75 +/- 2.2 per 100 cells respectively. These frequencies are within normal ranges for other somatic cells. After inhalation exposure to an occupational-exposure level of benzene (0, 0.1 and 1 ppm), significant dose-dependent induction of aberrations (1.2 +/- 2.3, 5.7 +/- 6.3 and 6.8 +/- 6.2 chromatid deletions per 100 cells resp.) were observed in the macrophages. Thus, these cells can be used as one of a battery of in vivo assays for inhalation exposure studies.  相似文献   

4.
PURPOSE: Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. MATERIALS AND METHODS: Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of a conventional iodinated contrast agent (Isovue-370), and after a single intravenous injection of a blood pool contrast agent (Fenestra VC). Multiple phases of the cardiac cycle were reconstructed with contrast to noise and spatial resolution sufficient for quantitative assessment of cardiac function. RESULTS: Contrast enhancement with Isovue-370 increased over time with a maximum of approximately 500 HU (aorta) and 900 HU (kidney cortex). Fenestra VC provided more constant enhancement over 3 hr, with maximum enhancement of approximately 620 HU (aorta) and approximately 90 HU (kidney cortex). The maximum enhancement difference between blood and myocardium in the heart was approximately 250 HU for Isovue-370 and approximately 500 HU for Fenestra VC. In mice with Fenestra VC, volumetric measurements of the left ventricle were performed and cardiac function was estimated by ejection fraction, stroke volume, and cardiac output. CONCLUSION: Image quality with Fenestra VC was sufficient for morphological and functional studies required for a standardized method of cardiac phenotyping of the mouse.  相似文献   

5.

Background

There is an increasing need for animal disease models for pathophysiological research and efficient drug screening. However, one of the technical barriers to the effective use of the models is the difficulty of non-invasive and sequential monitoring of the same animals. Micro-CT is a powerful tool for serial diagnostic imaging of animal models. However, soft tissue contrast resolution, particularly in the brain, is insufficient for detailed analysis, unlike the current applications of CT in the clinical arena. We address the soft tissue contrast resolution issue in this report.

Methodology

We performed contrast-enhanced CT (CECT) on mouse models of experimental cerebral infarction and hepatic ischemia. Pathological changes in each lesion were quantified for two weeks by measuring the lesion volume or the ratio of high attenuation area (%HAA), indicative of increased vascular permeability. We also compared brain images of stroke rats and ischemic mice acquired with micro-CT to those acquired with 11.7-T micro-MRI. Histopathological analysis was performed to confirm the diagnosis by CECT.

Principal Findings

In the models of cerebral infarction, vascular permeability was increased from three days through one week after surgical initiation, which was also confirmed by Evans blue dye leakage. Measurement of volume and %HAA of the liver lesions demonstrated differences in the recovery process between mice with distinct genetic backgrounds. Comparison of CT and MR images acquired from the same stroke rats or ischemic mice indicated that accuracy of volumetric measurement, as well as spatial and contrast resolutions of CT images, was comparable to that obtained with MRI. The imaging results were also consistent with the histological data.

Conclusions

This study demonstrates that the CECT scanning method is useful in rodents for both quantitative and qualitative evaluations of pathologic lesions in tissues/organs including the brain, and is also suitable for longitudinal observation of the same animals.  相似文献   

6.
Microcomputed tomography colonography (mCTC) is a new method for detecting colonic tumors in living animals and estimating their volume, which allows investigators to determine the spontaneous fate of individually annotated tumors as well as their response to chemotherapeutics. This imaging platform was developed using the Min mouse, but is applicable to any murine model of human colorectal cancer. MicroCT is capable of 20 micron resolution, however, 100 microns is sufficient for this application. Scan quality is primarily dependent on animal preparation with the most critical parameters being proper anesthesia, bowel cleansing, and sufficient insufflation. The detection of colonic tumors is possible by both 2D and 3D rendering of image data. Tumor volume is estimated using a semi-automated five-step process which is based on three algorithms within the Amira software package. The estimates are precise, accurate and reproducible enabling changes in volume as small as 16% to be readily observed. Confirmation of mCTC observations by gross examination and histology is sometimes useful in this otherwise non-invasive protocol. Finally, mCTC is compared to other newly developed small animal imaging platforms including microMRI and microoptical colonoscopy. A major advantage of these platforms is that investigators can be perform longitudinal studies, which often have much greater statistical power than traditional cross-sectional studies; consequently, fewer animals are required for testing.  相似文献   

7.
8.
9.
Small-animal X-ray dose from micro-CT   总被引:4,自引:0,他引:4  
The use of micro-CT in small animals has increased in recent years. Although the radiation levels used for micro-CT are generally not lethal to the animal, they are high enough where changes in the immune response and other biological pathways may alter the experimental outcomes. Therefore, it is important to understand what the doses are for a specific imaging procedure. Monte Carlo simulation was used to evaluate the radiation dose to small animals (5-40 mm in diameter) as a result of X-ray exposure. Both monoenergetic (6-100 keV) and polyenergetic (15-100 kVp) X-ray sources were simulated under typical mouse imaging geometries. X-ray spectral measurements were performed on a mouse imaging X-ray system using a commercially available X-ray spectrometer, and spectra from high-energy systems were used as well. For a typical X-ray system with 1.0 mm of added Al at 40 kVp, the dose coefficients (dose to mouse per air kerma at isocenter) were 0.80, 0.63, 0.52, and 0.44 mGy/mGy for mouse diameters of 10, 20, 30, and 40 mm, respectively. A number of tables and figures are provided for dose estimation over a range of mouse imaging geometries.  相似文献   

10.
We studied the lung proteome changes in two widely used models of pulmonary arterial hypertension (PAH): monocrotaline (MCT) injection and chronic hypoxia (CH); untreated rats were used as controls (n = 6/group). After 28 days, invasive right ventricular systolic pressure (RVSP) was measured. Lungs were immunostained for alpha-smooth muscle actin (alphaSMA). 2-DE (n = 4/group) followed by nano-LC-MS/MS was applied for protein identification. Western blotting was used additionally if possible. RVSP was significantly increased in MCT- and CH-rats (MCT 62.5 +/- 4.4 mmHg, CH 62.2 +/- 4.1 mmHg, control 25.0 +/- 1.7 mmHg, p<0.001). This was associated with an increase of alphaSMA positive vessels. In both groups, there was a significantly increased expression of proteins associated with the contractile apparatus (diphosphoHsp27 (p<0.001), Septin2 (p<0.001), F-actin capping protein (p<0.01), and tropomyosin beta (p<0.02)). In CH, proteins of the nitric oxide (Hsc70; p = 0.002), carbon monoxide (biliverdin reductase; p = 0.005), and vascular endothelial growth factor (VEGF) pathway (annexin 3; p<0.001) were significantly increased. In MCT, proteins involved in serotonin synthesis (14-3-3; p = 0.02), the enhanced unfolded protein response (ERp57; p = 0.02), and intracellular chloride channels (CLIC 1; p = 0.002) were significantly elevated. Therefore, MCT- and CH-induced vasoconstriction and remodeling seemed to be mediated via different signaling pathways. These differences should be considered in future studies using either PAH model.  相似文献   

11.
The oxidative metabolism of the carcinogen dimethylnitrosamine (DMN) was studied in mouse, rat, hamster and human respiratory tissue. [14C]DMN was purified by Dowex-1-bisulfite column chromatography to remove a contaminant (probably [14C]formaldehyde) interfering with the enzyme assay. Since formaldehyde and methyl carbonium ions - yielding methanol with water - are considered to be the primary products of DMN metabolism, tissue slices were assayed for the production of [14C]CO2 from 14C-labelled methanol, formaldehyde, formate, and DMN. Oxidation of formaldehyde to formate was not, but oxidation of formate to CO2 was very much rate-limiting. This rate-limiting step was circumvented by introducing quantitative chemical oxidation of formate to CO2 by mercury(II)chloride following the enzymic reaction. Since oxidation of methanol to CO2 proved to be insignificant, production of CO2 from DMN by lung tissue enzymes and HgCl2 may serve as a parameter for N-demethylating activity and the production of the suspected carcinogenically active methyl carbonium ions. The DMN-N-demethylating activities of lung tissue slices of two mouse strains with widely different susceptibilities to formation of lung adenomas by DMN differed significantly, but the difference seemed too small to explain the divergence in tumourigenic response. The enzymatic activities decreased in hamster bronchus, hamster trachea, hamster lung, GRS/A mouse lung, C3Hf/A mouse lung, human lung, Sprague-Dawley rat lung, in that order. The reported resistance of the hamster respiratory system to tumour induction by DMN may therefore not be due to poor DMN-N-demethylating capacity.  相似文献   

12.
Over the past decade, the number of publications using micro-computed tomography (μCT) imaging in preclinical in vivo studies has risen exponentially. Higher spatial and temporal resolution are the key technical advancements that have allowed researchers to capture increasingly detailed anatomical images of small animals and to monitor the progression of disease in small animal models. The purpose of this review is to present the technical aspects of μCT, as well as current research applications. Our objectives are threefold: to familiarize the reader with the basics of μCT techniques; to present the type of experimental designs currently used; and to highlight limitations, future directions, in μCT-scanner research applications, and experimental methods. As a first step we present different μCT setups and components, as well as image contrast generation principles. We then present experimental approaches in order of the evaluated organ system. Finally, we provide a short summary of some of the technical limitations of μCT imaging and discuss potential future developments in μCT-scanner techniques and experimental setups.  相似文献   

13.
14.
PurposeMicron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research.MethodsBased on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field.ResultsRepresentative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT.ConclusionsAll of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.  相似文献   

15.
Acute lung injury is a complex illness with a high mortality rate (>30%) and often requires the use of mechanical ventilatory support for respiratory failure. Mechanical ventilation can lead to clinical deterioration due to augmented lung injury in certain patients, suggesting the potential existence of genetic susceptibility to mechanical stretch (6, 48), the nature of which remains unclear. To identify genes affected by ventilator-induced lung injury (VILI), we utilized a bioinformatic-intense candidate gene approach and examined gene expression profiles from rodent VILI models (mouse and rat) using the oligonucleotide microarray platform. To increase statistical power of gene expression analysis, 2,769 mouse/rat orthologous genes identified on RG_U34A and MG_U74Av2 arrays were simultaneously analyzed by significance analysis of microarrays (SAM). This combined ortholog/SAM approach identified 41 up- and 7 downregulated VILI-related candidate genes, results validated by comparable expression levels obtained by either real-time or relative RT-PCR for 15 randomly selected genes. K-mean clustering of 48 VILI-related genes clustered several well-known VILI-associated genes (IL-6, plasminogen activator inhibitor type 1, CCL-2, cyclooxygenase-2) with a number of stress-related genes (Myc, Cyr61, Socs3). The only unannotated member of this cluster (n = 14) was RIKEN_1300002F13 EST, an ortholog of the stress-related Gene33/Mig-6 gene. The further evaluation of this candidate strongly suggested its involvement in development of VILI. We speculate that the ortholog-SAM approach is a useful, time- and resource-efficient tool for identification of candidate genes in a variety of complex disease models such as VILI.  相似文献   

16.
Obesity is the major risk factor for metabolic syndrome and through it diabetes as well as cardiovascular disease. Visceral fat (VF) rather than subcutaneous fat (SF) is the major predictor of adverse events. Currently, the reference standard for measuring VF is abdominal X-ray computed tomography (CT) or magnetic resonance imaging (MRI), requiring highly used clinical equipment. Dual-energy X-ray absorptiometry (DXA) can accurately measure body composition with high-precision, low X-ray exposure, and short-scanning time. The purpose of this study was to validate a new fully automated method whereby abdominal VF can be measured by DXA. Furthermore, we explored the association between DXA-derived abdominal VF and several other indices for obesity: BMI, waist circumference, waist-to-hip ratio, and DXA-derived total abdominal fat (AF), and SF. We studied 124 adult men and women, aged 18-90 years, representing a wide range of BMI values (18.5-40 kg/m(2)) measured with both DXA and CT in a fasting state within a one hour interval. The coefficient of determination (r(2)) for regression of CT on DXA values was 0.959 for females, 0.949 for males, and 0.957 combined. The 95% confidence interval for r was 0.968 to 0.985 for the combined data. The 95% confidence interval for the mean of the differences between CT and DXA VF volume was -96.0 to -16.3 cm(3). Bland-Altman bias was +67 cm(3) for females and +43 cm(3) for males. The 95% limits of agreement were -339 to +472 cm(3) for females and -379 to +465 cm(3) for males. Combined, the bias was +56 cm(3) with 95% limits of agreement of -355 to +468 cm(3). The correlations between DXA-derived VF and BMI, waist circumference, waist-to-hip ratio, and DXA-derived AF and SF ranged from poor to modest. We conclude that DXA can measure abdominal VF precisely in both men and women. This simple noninvasive method with virtually no radiation can therefore be used to measure VF in individual patients and help define diabetes and cardiovascular risk.  相似文献   

17.
Non-invasive three-dimensional imaging of live rodents is a powerful research tool that has become critical for advances in many biomedical fields. For investigations into adipose development, obesity, or diabetes, accurate and precise techniques that quantify adiposity in vivo are critical. Because total body fat mass does not accurately predict health risks associated with the metabolic syndrome, imaging modalities should be able to stratify total adiposity into subcutaneous and visceral adiposity. Micro-computed tomography (micro-CT) acquires high-resolution images based on the physical density of the material and can readily discriminate between subcutaneous and visceral fat. Here, a micro-CT based method to image the adiposity of live rodents is described. An automated and validated algorithm to quantify the volume of discrete fat deposits from the computed tomography is available. Data indicate that scanning the abdomen provides sufficient information to estimate total body fat. Very high correlations between micro-CT determined adipose volumes and the weight of explanted fat pads demonstrate that micro-CT can accurately monitor site-specific changes in adiposity. Taken together, in vivo micro-CT is a non-invasive, highly quantitative imaging modality with greater resolution and selectivity, but potentially lower throughput, than many other methods to precisely determine total and regional adipose volumes and fat infiltration in live rodents.  相似文献   

18.
In vivo animal models of neoplasm, stroke, subarachnoid hemorrhage, and other diseases involving alterations in vessel anatomy and diameter, require a fast and easy-to-use imaging tool that captures anatomical structure and biologic function data. Micro-computed tomography angiography (μCTA) offers high spatial and temporal resolution and is suitable to perform this task. However, conducting μCTA in small rodents, especially in mice, requires a high degree of accuracy and precision. This article describes a setup for in vivo μCTA in mice using both a bolus technique with a conventional contrast agent, as well as, angiography with a blood-pool contrast agent. Our setup in mice is at isotropic resolutions up to 16 μm with scanning times less than 1 min. The described protocol also addresses some of the technical challenges associated with the imaging of vascular structures in mice models.  相似文献   

19.
20.
Recent developments in genomics, proteomics, and metabolomics hold substantial promise for understanding cellular responses to toxicants. Gene expression profiling is now considered standard procedure, but numerous publications reporting a lack of correlation between mRNA and protein expression emphasize the importance of conducting parallel proteomics studies. The cellular complexity of the lung presents great challenges for in vivo proteomics, and improved isolation methods for proteins from specific lung cell phenotypes are required. To address this issue, we have developed a novel method for isolation of rodent airway epithelial cell proteins that facilitates in vivo proteomics studies of two target-cell pheno-types of the lung, Clara cells and ciliated cells. The airway epithelial cell proteins are reproducibly solubilized, leaving the underlying basement membrane and smooth muscle intact as shown by histopathological analyses. The method yields epithelial cell-specific proteins in fivefold higher concentrations and reduces the yield of nonepithelial cell proteins 13-fold compared with homogenates from microdissected airways. In addition, 36% more protein spots were detectable by two-dimensional gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号