首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

2.
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host''s ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.  相似文献   

3.

Background  

The expression of heterologous proteins in Escherichia coli is strongly affected by codon bias. This phenomenon occurs when the codon usage of the mRNA coding for the foreign protein differs from that of the bacterium. The ribosome pauses upon encountering a rare codon and may detach from the mRNA, thereby the yield of protein expression is reduced. Several bacterial strains have been engineered to overcome this effect. However, the increased rate of translation may lead to protein misfolding and insolubilization. In order to prove this assumption, the solubility of several recombinant proteins from plants was studied in a codon bias-adjusted E. coli strain.  相似文献   

4.
5.
The Escherichia coli strain JA221 can suppress the UAG stop codon, although the existence of an amber suppressor tRNA has not previously been described for this strain. When using a plasmid to express α-sarcin, which has TAG as its stop signal, two proteins were obtained: a smaller protein corresponding in size to that of the expected protein, and a larger protein, which could be accounted for by the presence of a second stop codon (TGA) 18 base pairs downstream of the original. This feature of strain JA221 must therefore be considered when using this strain as a host for the production of recombinant proteins.  相似文献   

6.
The stability of CTG triplet repeats was analyzed in Escherichia coli to identify processes responsible for their genetic instability. Using a biochemical assay for stability, we show that the absence of single-stranded-DNA-binding protein leads to an increase in the frequency of large deletions within the triplet repeats.  相似文献   

7.
8.
A recombinant Escherichia coli strain with the cloned gene of restriction endonuclease EcoR-V was studied. The diauxic growth of this strain under batch conditions, the composition of excreted products and the hyperbolic shape of the chemostat growth curve has made it possible to formulate the following hypothesis. At a high flow rate, one of the first reactions in the tricarboxylic acid cycle or a reaction directly preceding the cycle is a limiting step in the metabolism of E. coli cells. The saturation of the limiting reaction with a substrate at a flow rate higher than the critical one may be responsible for the hyperbolic profile of chemostat curves. The above hypothesis was confirmed by experiments conducted under extreme conditions, in which the composition of the growth medium was changed and the temperature was raised so that the cloned protein synthesis was depressed. Under such conditions, the enzyme composition of the cell was fixed and determined by the physiological state of the culture at a time when the temperature was elevated. The hypothesis was also supported by the results obtained in growing the strain with the induced protein synthesis in media to which various compounds were added.  相似文献   

9.
Escherichia coli strain E247 (polA1 recB21) has reduced colony formation (even at the permissive temperature of 30 degrees C) because of a poor suppressor mutation (sup-126). The colony formation was enhanced in the absence of oxygen about 3-fold at 30 degrees C and 10(6)-fold at 43 degrees C, suggesting that a polA recB strain was inviable due to oxygen toxicity. Colony formation was also increased by incubation in an agar medium containing the reducing agent thioglycolate and incubation in the presence of chloroform-killed Saccharomyces cerevisiae pet+ cells, but not pet cells. Since the E247 strain viability was inversely dependent on the oxygen pressure and since the strain was more sensitive to superoxide radical than either the polA or the recB mutant, it seems likely that the polA and recB genes play a role in repairing DNA damage during respiration.  相似文献   

10.
11.
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.  相似文献   

12.
13.
Reversion of a streptomycin-dependent strain of Escherichia coli   总被引:13,自引:0,他引:13  
Summary A streptomycin dependent, spectinomycin resistant mutant ofEscherichia coli was used to select spontaneous phenotypic revertants to non-dependence on streptomycin. The ribosomes from one such revertant, which is inhibited by both streptomycin and spectinomycin, were analyzedin vitro. The altered protein responsible for the suppression of the streptomycin dependent phenotype was identified; this protein is 30S-10. The genetic locus for this mutation is a newly identified locus and it has been positioned close to thestr locus. The identification of the altered component responsible for the suppression of the spectinomycin resistant phenotype may be the same as that for the streptomycin dependent phenotype, but this is unproven.  相似文献   

14.
The ribosome binding region of the messenger RNA for the Escherichia coli carA gene contains two adjacent putative translational start codons, UUG and AUU, both of them unusual. By Edman degradation and mass spectrometry of purified carA protein, we show that only UUG is used in vivo. Translation initiation at UUG in carA appears about half as efficient as at AUG in lacZ.  相似文献   

15.
Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Delta(csgG-csgC); colanic acid biosynthesis and assembly, Delta(wcaL-wza); and type I pilus biosynthesis, Delta(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were approximately 16% and approximately 25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.  相似文献   

16.
17.
18.
19.
The involvement of nucleotides adjacent to the termination codons in tRNA during the suppression of termination has been formulated as the 'context theory' by Bossi and Roth (1980) [Nature (Lond.) 286, 123-127]. The finding that U-U-G functions as an initiator codon has revived the discussion on the participation of the nucleotides flanking the initiator triplet in the decoding of initiator tRNA (context theory of initiation by the ribosome). We compared the capacity of oligonucleotides cognate to the anticodon loop of formylmethionine tRNA, such as A-U-G, A-U-G-A and U-A-U-G-A, to enhance the formation of the 30-S and 70-S ribosomal initiation complexes. Three different methods were used to determine the apparent binding constants and the stoichiometries of the respective complexes: adsorption of the complexes to nitrocellulose filters, equilibrium dialysis, and velocity sedimentation. We found that in the 30-S ribosomal initiation complex and in the presence of initiation factor 2 and GTP, formylmethionyl-tRNA is preferentially decoded by more than three mRNA bases. With the 70-S ribosome, however, once initiation factor 2 had been released, A-U-G represented the most effective codon to direct the formylmethionyl-tRNA to the peptidyl site. An extended initiator sequence may either give additional stability to the 30-S initiation complex or may allow for an ambiguity by one base pair in the decoding of the initiator tRNA.  相似文献   

20.
Individual ribosomal proteins S4, S9 and S13 were tested for their ability to interact with tRNA and synthetic polynucleotides. All three proteins bind to immobilized to Sepharose poly(A) and poly(U), while S4 and S13 form stoichiometric (1:1) complexes with tRNA in solution. We show that only the polynucleotide X S13 complexes are able to select their cognate tRNAs. In particular, the affinity of tRNAPhe to the binary poly(U) X S13 complex is about three orders of magnitude higher than that for poly(U) alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号