首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY Evolution proceeds by the selection of characters that enhance survival rates so that the long-term outcome for a species is better adaptation to its environment. These new characters are "accidentally" acquired, mostly through mutations leading to modifications of developmental events. However, changes that lead to the ectopic expression of an organ are rare and, whereas their subsequent selection for a new role is even more rare, such a scenario has apparently occurred for denticles in some teleost fish. Small, conical denticles are present, mainly on the dermal bones of the head, in a few, unrelated lineages of living teleosts. Here, I show that the morphology and structure of the denticles in Atherion elymus , an atheriniform, is similar to those of teeth inside the oral cavity. These denticles are not derived evolutionarily from odontodes of early vertebrates, nor do they represent a re-expression as such (i.e., a long-lasting ability to make odontodes outside the oral cavity). Teeth and odontodes are homologous organs but the origin of the denticles is to be found in teeth, not in odontodes. The denticles are simply teeth that form outside the mouth, probably derived from a sub-population of odontogenically pre-specified neural crest cells. These "accidental" extra-oral teeth have arisen independently in these lineages and were selectively advantageous in a hydrodynamic context.  相似文献   

2.
This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid‐dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre‐caudal pit and the second dorsal and pelvic fins. A detailed three‐dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins.  相似文献   

3.
Paleozoic chondrichthyans had a large gape, numerous spike-liketeeth, limited cranial kinesis, and a non-suspensory hyoid,suggesting a feeding mechanism dominated by bite and ram. Modernsharks are characterized by a mobile upper jaw braced by a suspensoryhyoid arch that is highly kinetic. In batoids, the upper jawis dissociated from the cranium permitting extensive protrusionof the jaws. Similar to actinopterygians, the evolution of highlymobile mandibular and hyoid elements has been correlated withextensive radiation of feeding modes in elasmobranchs, particularlythat of suction. Modern elasmobranchs possess a remarkable varietyof feeding modes for a group containing so few species. Biting,suction or filter-feeding may be used in conjunction with ramto capture prey, with most species able to use a combinationof behaviors during a strike. Suction-feeding has repeatedlyarisen within all recent major elasmobranch clades and is associatedwith a suite of morphological and behavioral specializations.Prey capture in a diverse assemblage of purported suction-feedingelasmobranchs is investigated in this study. Drop in water pressuremeasured in the mouth and at the location of the prey showsthat suction inflow drops off rapidly with distance from thepredator's mouth. Elasmobranchs specializing in suction-feedingmay be limited to bottom associated prey and because of theirsmall gape may have a diet restricted to relatively small prey.Behavior can affect performance and overcome constraints imposedby the fluid medium. Suction performance can be enhanced byproximity to a substrate or by decreasing distance from predatorto prey using various morphological and/or behavioral characteristics.Benthic suction-feeders benefit by the increased strike radiusdue to deflection of water flow when feeding close to a substrate,and perhaps require less accuracy when capturing prey. Suctionand ram-suction-feeding elasmobranchs can also use suction inflowto draw prey to them from a short distance, while ram-feedingsharks must accelerate and overtake the prey. The relationshipbetween feeding strategy and ecology may depend in part on ecological,mechanistic or evolutionary specialization. Mechanistic suction-feedingspecialist elasmobranchs are primarily benthic, while most epibenthicand pelagic elasmobranchs are generalists and use ram, suction,and biting to catch a diversity of prey in various habitats.Some shark species are considered to be ecological specialistsin choosing certain kinds of prey over others. Batoids are evolutionaryspecialists in having a flattened morphology and most are generalistfeeders. Filter-feeding elasmobranchs are ecological, mechanistic,and evolutionary specialists.  相似文献   

4.
The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness.  相似文献   

5.
The feeding mechanism of the South American lungfish, Lepidosiren paradoxa retains many primitive teleostome characteristics. In particular, the process of initial prey capture shares four salient functional features with other primitive vertebrates: 1) prey capture by suction feeding, 2) cranial elevation at the cranio-vertebral joint during the mouth opening phase of the strike, 3) the hyoid apparatus plays a major role in mediating expansion of the oral cavity and is one biomechanical pathway involved in depressing the mandible, and 4) peak hyoid excursion occurs after maximum gape is achieved. Lepidosiren also possesses four key morphological and functional specializations of the feeding mechanism: 1) tooth plates, 2) an enlarged cranial rib serving as a site for the origin of muscles depressing the hyoid apparatus, 3) a depressor mandibulae muscle, apparently not homologous to that of amphibians, and 4) a complex sequence of manipulation and chewing of prey in the oral cavity prior to swallowing. The depressor mandibulae is always active during mouth opening, in contrast to some previous suggestions. Chewing cycles include alternating adduction and transport phases. Between each adduction, food may be transported in or out of the buccal cavity to position it between the tooth plates. The depressor mandibulae muscle is active in a double-burst pattern during chewing, with the larger second burst serving to open the mouth during prey transport. Swallowing is characterized by prolonged activity in the hyoid constrictor musculature and the geniothoracicus. Lepidosiren uses hydraulic transport achieved by movements of the hyoid apparatus to position prey within the oral cavity. This function is analogous to that of the tongue in many tetrapods.  相似文献   

6.
Pit organs (free neuromasts of the mechanosensory lateral line system) are distributed over the skin of elasmobranchs. To investigate phylogenetic trends in the distribution and abundance of pit organs, 12 relevant morphological characters were added to an existing matrix of morphological data (plus two additional end terminals), which was then re-analysed using cladistic parsimony methods ( paup * 4.0b10). Character transformations were traced onto the most parsimonious phylogenetic trees. The results suggest the following interpretations. First, the distinctive overlapping denticles covering the pit organs in many sharks are a derived feature; plesiomorphic elasmobranchs have pit organs in open slits, with widely spaced accessory denticles. Second, the number of pit organs on the ventral surface of rays has been reduced during evolution, and third, spiracular pit organs have changed position or have been lost on several occasions in elasmobranch evolution. The concentrated-changes test in macclade (version 4.05) was used to investigate the association between a pelagic lifestyle and loss of spiracular pit organs (the only character transformation that occurred more than once within pelagic taxa). Depending on the choice of tree, the association was either nonsignificant at P  = 0.06 or significant at P  < 0.05. Future studies, using species within more restricted elasmobranch clades, are needed to resolve this issue.  相似文献   

7.
In the course of an evolutionary and developmental study on the dermal skeleton, our attention was drawn to the existence of denticles located outside the oral cavity in the atheriniform species Atherion elymus. These denticles, attached to the surface of most dermal bones of the head, are especially numerous on the snout, chin and the undersides of the lower region of the head, where they are aligned forming a crenulated keel. Using light, scanning and transmission electron microscopy, we clearly demonstrate the dental (vs bony) nature of these denticles. They are small, conical elements mostly oriented backwards and are not ankylosed to the bone support. Ligaments originating from the internal and external surface of the base of the dentine cone link the denticles to the attachment bone, which itself merges with the bone support below. The denticles have the same form and structure as teeth, from which they differ only in having a larger base and a pulp cavity that is nearly completely filled with secondary dentine by centripetal deposition. This suggests that the denticles have a longer functional history than teeth. Atherion is now the fourth teleost lineage found to develop such denticles on the head.  相似文献   

8.
Dermal denticles are unique tooth-like structures embedded in the skin of sharks and rays that protect them from predators and ectoparasites, reduce mechanical abrasion and possibly minimize swimming-induced drag. Here, we show that juvenile lesser spotted dogfish (Scyliorhinus canicula) also use this body armour to anchor food items near their tail so that bite-sized pieces can be torn away by rapid jaw and head movements. This scale-rasp behaviour is novel among fishes and suggests a new role for skin in the feeding ecology of sharks. Scale rasping may be important ecologically because it could function to increase the dietary breadth and growth potential of juveniles.  相似文献   

9.
Synopsis The silver arawana, Osteoglossum bicirrhosum, hunts along shorelines and within flooded forests in the Amazon River basin and supplements its limited consumption of aquatic vertebrates by leaping from the water to obtain terrestrial and arboreal prey. We offered O. bicirrhosum prey both suspended above and submerged below the surface of the water. From high-speed digital recordings, we measured kinematic variables associated with the jaws, cranium, pectoral fins, and body during orientation and prey capture. Aquatic and aerial feeding events were kinematically distinct, with aerial events generally involving faster, larger movements and a distinct delay in the onset of lower jaw depression until the head had left the water. The comparatively large gape during leaping may facilitate prey capture by overcoming variability in the apparent position of the prey due to refraction, while the delayed onset of mouth opening may serve to reduce the effects of drag. This distinctive leaping behaviour allows exploitation of the terrestrial prey base, especially during seasonal inundation of the Amazon River basin when the aquatic food base is widely dispersed.  相似文献   

10.
Jaw protrusion is a major functional motif in fish feeding and can occur during mouth opening or closing. This temporal variation impacts the role that jaw protrusion plays in prey apprehension and processing. The lesser electric ray Narcine brasiliensis is a benthic elasmobranch (Batoidea: Torpediniformes) with an extreme and unique method of prey capture. The feeding kinematics of this species were investigated using high-speed videography and pressure transduction. The ray captures its food by protruding its jaws up to 100% of head length (approximately 20% of disc width) beneath the substrate and generating negative oral pressures (< or = 31 kPa) to suck worms into its mouth. Food is further winnowed from ingested sediment by repeated, often asymmetrical protrusions of the jaws (> 70 degrees deviation from the midline) while sand is expelled from the spiracles, gills and mouth. The pronounced ram contribution of capture (jaw protrusion) brings the mouth close enough to the food to allow suction feeding. Due to the anatomical coupling of the jaws, upper jaw protrusion occurs in the expansive phase (unlike most elasmobranchs and similar to bony fishes), and also exhibits a biphasic (slow-open, fast-open) movement similar to tetrapod feeding. The morphological restrictions that permit this unique protrusion mechanism, including coupled jaws and a narrow gape, may increase suction performance, but also likely strongly constrain dietary breadth.  相似文献   

11.
How long-extinct jawless fishes fed is poorly understood, yet interpretations of feeding are an important component of many hypotheses concerning the origin and early evolution of vertebrates. Heterostracans were the most diverse clade of armoured jawless vertebrates (stem gnathostomes), and the structure of the mouth and its use in feeding are the subjects of long-standing and heated controversy. I present here evidence that heterostracan feeding structures exhibit recurrent patterns of in vivo wear, are covered internally by microscopic oral denticles, and that the mouth may have been less flexible than has been thought. These data, particularly the absence of wear at the tips of oral plates, and the evidence that the mouth was lined with delicate outwardly directed denticles, effectively falsify all but one hypothesis of feeding in heterostracans: heterostracans were microphagous suspension feeders. This has a direct bearing on hypotheses that address ecological aspects of early vertebrate diversity and evolution, contradicting the widespread view that the pattern of early vertebrate evolution reflects a long-term trend towards increasingly active and predatory habits.  相似文献   

12.
Hiran M. Dutta 《Zoomorphology》1987,106(6):369-381
Summary Astronotus ocellatus captures its prey by creating a negative pressure in the buccal cavity which is caused by its quick expansion. Once the prey has been accommodated, the buccal cavity undergoes a compression which may propel the prey towards the pharyngeal jaws for mastication. The motion picture recordings indicate retracted premaxillae at the beginning of food intake followed by a maximum attainment of mouth gape and then mastication. During the maximum opening of the mouth the premaxillae are protruded and dentaries are at maximum depression. These events are followed by activities such as buccopharyngeal cavity expansion, bulging on the ventral surface of the head, and prominent curvature on the ventral surface anterior to the urohyal, caused by the upward movement of the glossohyal. Based on the cinematographic results, it may be inferred that the maximum mouth gape is caused by the sternohyoid-hyoid-interopercular-mandible coupling, and not by the opercular apparatus-mandible coupling, as the latter acts after the full descent of the lower jaw. Impression of the expanded buccopharyngeal cavity has been made by a paraffin mold technique, which confirms the displacement of the buccopharyngeal elements during expansion of the cavity.  相似文献   

13.
Suction feeding mechanics, performance, and diversity in fishes   总被引:1,自引:0,他引:1  
Despite almost 50 years of research on the functional morphologyand biomechanics of suction feeding, no consensus has emergedon how to characterize suction-feeding performance, or its morphologicalbasis. We argue that this lack of unity in the literature isdue to an unusually indirect and complex linkage between themuscle contractions that power suction feeding, the skeletalmovements that underlie buccal expansion, the sharp drop inbuccal suction pressure that occurs during expansion, the flowof water that enters the mouth to eliminate the pressure gradient,and the forces that are ultimately exerted on the prey by thisflow. This complexity has led various researchers to focus individuallyon suction pressure, flow velocity, or the distance the preymoves as metrics of suction-feeding performance. We attemptto integrate a mechanistic view of the ability of fish to performthese components of suction feeding. We first discuss a modelthat successfully relates aspects of cranial morphology to thecapacity to generate suction pressure in the buccal cavity.This model is a particularly valuable tool for studying theevolution of the feeding mechanism. Second, we illustrate themultidimensional nature of suction-feeding performance in acomparison of bluegill, Lepomis macrochirus, and largemouthbass, Micropterus salmoides, two species that represent oppositeends of the spectrum of performance in suction feeding. As anticipated,bluegills had greater accuracy, lower peak flux into the mouth,and higher flow velocity and acceleration of flow than did bass.While the differences between species in accuracy of strikeand peak water flux were substantial, peak suction velocityand acceleration were only about 50% higher in bluegill, a relativelymodest difference. However, a hydrodynamic model of the forcesthat suction feeders exert on their prey shows that this differencein velocity is amplified by a positive effect of the smallermouth aperture of bluegill on force exerted on the prey. Ourmodel indicates that the pressure gradient in front of a fishthat is feeding by suction, associated with the gradient inwater velocity, results in a force on the prey that is largerthan drag or acceleration reaction. A smaller mouth apertureresults in a steeper pressure gradient that exerts a greaterforce on the prey, even when other features of the suction floware held constant. Our work shows that some aspects of suction-feedingperformance can be determined from morphology, but that thecomplexity of the behavior requires a diversity of perspectivesto be used in order to adequately characterize performance.  相似文献   

14.
Most snakes ingest and transport their prey via a jaw ratchetingmechanism in which the left and right upper jaw arches are advancedover the prey in an alternating, unilateral fashion. This unilateraljaw ratcheting mechanism differs greatly from the hyolingualand inertial transport mechanisms used by lizards, both of whichare characterized by bilaterally synchronous jaw movements.Given the well-corroborated phylogenetic hypothesis that snakesare derived from lizards, this suggests that major changes occurredin both the morphology and motor control of the feeding apparatusduring the early evolution of snakes. However, most previousstudies of the evolution of unilateral feeding mechanisms insnakes have focused almost exclusively on the morphology ofthe jaw apparatus because there have been very few direct observationsof feeding behavior in basal snakes. In this paper I describethe prey transport mechanisms used by representatives of twofamilies of basal snakes, Leptotyphlopidae and Typhlopidae.In Leptotyphlopidae, a mandibular raking mechanism is used,in which bilaterally synchronous flexions of the lower jaw serveto ratchet prey into and through the mouth. In Typhlopidae,a maxillary raking mechanism is used, in which asynchronousratcheting movements of the highly mobile upper jaws are usedto drag prey through the oral cavity. These findings suggestthat the unilateral feeding mechanisms that characterize themajority of living snakes were not present primitively in Serpentes,but arose subsequently to the basal divergence between Scolecophidiaand Alethinophidia.  相似文献   

15.
Electroreception is found throughout the animal kingdom from invertebrates to mammals and has been shown to play an important role in prey detection, facilitating social behaviours, the detection of predators and orientation to the earth's magnetic field for navigation. Electroreceptors in elasmobranchs, the ampullae of Lorenzini, detect minute electric fields and independently process these stimuli, thereby providing spatial information to the central nervous system on the location of a source, often potential prey. The ampullae of Lorenzini are individually connected to a single somatic pore on the surface of the skin, with the spatial separation of each pore directly influencing how electrical stimuli are detected and processed. Pore abundance varies across taxonomic groups resulting in unique species-specific differences. The intricate distribution patterns created by the specific positioning of somatic pores on the head are, however, consistent within families, resulting in patterns that are identifiable at higher taxonomic levels. As elasmobranchs evolved, the electrosensory system became more complex and highly specialized, which is evident by a general trend of increasing pore abundance over time. The elasmobranch electrosensory system has evolved to operate efficiently under the environmental conditions of the particular habitat in which a species lives. For example, reduced pore abundance is evident in oceanic pelagic elasmobranchs, for whom visual cues are thought to be of great importance. Pore abundance and spatial distribution may be influenced by multiple factors including head morphology, phylogeny, feeding behaviour and habitat.  相似文献   

16.
Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale’s body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale’s body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios. This study provides the theoretical framework required to estimate the scaling of the mass-specific drag being generated during engulfment, as well as the energy expenditures incurred.  相似文献   

17.
Teeth and skin teeth (denticles), collectively named odontodes, are usually associated with the physical roles of cutting, protection or drag reduction in fishes [1,2]. These structures are composed of a soft pulp surrounded by dentine and covered by a mineralized substance such as enamel [3]. Odontodes arise from neural crest cells and epithelium and are often innervated [1-3]. However, little is known about their possible sensory function. Here, we demonstrate for the first time a mechanosensory role for denticles in a cavefish endemic to a fast water flow cave. All fishes gather hydrodynamic information via specialized sense organs called neuromasts [4-6]. Some fishes are especially attentive to such type of information [5] and until now hypertrophy of the neuromast system has been reported as the main constructive sensory adaptation in cavefishes [6,7]. We expect that the mechanosensory nature of denticles highlighted in this cave fish species might reflect a widespread sensory role for these structures in other animals.  相似文献   

18.
Peter  Aerts 《Journal of Zoology》1990,220(4):653-678
Movement analysis of the 'volume suction' feeding type in Astarotilapia elegans suggests the existence of an inhibiting peripheral feedback control on the fast movements of the head parts, apparently triggered by the food items entering through the mouth aperture. As soon as the prey passes the mouth, rostral expansion of the buccopharyngeal cavity stops. On the basis of a mathematical model and physiological evidence, respectively, visual and chemical perception must probably be excluded as the initial stimulus of the feedback control. The simulation of the hydrodynamic characteristics of the suction flow at the level of the gape reveals sudden changes in the pressure and acceleration waves coupled to the moment of prey uptake. These fluctuations are premised to generate the triggering signal. The possibility of modulation entails re-evaluation of the neuro-motoric preprogamming concept.  相似文献   

19.
Ontogenetic changes in the absolute dimensions of the cranial system together with changes in kinematics during prey capture can cause differences in the spatiotemporal patterns of water flow generated during suction feeding. Because the velocity of this water flow determines the force that pulls prey toward and into the mouth cavity, this can affect suction feeding performance. In this study, size-related changes in the suction-induced flow patterns are determined. To do so, a mathematical suction model is applied to video recordings of prey capturing Clarias gariepinus ranging in total length from 111 to 923 mm. Although large C. gariepinus could be expected to have increasing peak velocities of water flow compared with small individuals, the results from the hydrodynamic model show that this is not the case. Yet, when C. gariepinus becomes larger, the expansive phase is prolonged, resulting in a longer sustained flow. This flow also reaches farther in front of the mouth almost proportionally with head size. Forward dynamical simulations with spherical prey that are subjected to the calculated water flows indicate that the absolute distance from which a given prey can be sucked into the mouth as well as the maximal prey diameter increase substantially with increasing head size. Consequently, the range of potential prey that can be captured through suction feeding will become broader during growth of C. gariepinus. This appears to be reflected in the natural diet of this species, where both the size and the number of evasive prey increase with increasing predator size.  相似文献   

20.
Several surfperches (Embiotocidae), including the black surfperch, Embiotoca jacksoni, exhibit a specialized prey handling behavior known as winnowing, in which ingested food and non-nutritive debris are separated within the oropharyngeal cavity. Prey items are swallowed, and unpalatable material is ejected from the mouth. Winnowing is believed to play an important role in the partitioning of food resources among sympatric embiotocids. We present a mechanistic model for this separative prey processing based on high-speed video analysis, cineradiography, electromyography, and buccal and opercular cavity pressure transducer recording. Winnowing by embiotocids is characterized by premaxillary protrusions repeated cyclically with reduced oral gape. Protrusion is accompanied by depression of the hyoid apparatus and adduction of the opercula. Alternating expansion and contraction of the buccal and opercular cavities generate regular pressure waveforms that indicate bidirectional water flow during processing. Separation of food from debris by Embiotoca jacksoni occurs in three phases. The prey-debris bolus is transported anteriorly and posteriorly within the oropharyngeal cavity and is then sheared by the pharyngeal jaws. Mechanical processing is complemented by the rinsing action of water currents during hydraulic prey transport. The feeding apparatus of Embiotoca jacksoni is functionally versatile, although not obviously specialized relative to that of nonwinnowing surfperches. Protrusion of the premaxillae and depression of the hyoid apparatus are critical to both prey capture and subsequent prey processing. The pharyngeal jaws exhibit kinematic patterns during separation of food from debris distinct from those observed during mastication of uncontaminated prey. This behavioral flexibility facilitates resource partitioning and the coexistence of E. jacksoni in sympatric embiotocid assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号