首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mussels of the subfamily Bathymodiolinae thrive around chimneys emitting hot fluids at deep sea hydrothermal vents, as well as at cold seeps and on sunken organic debris (sunken wood, whale falls). Despite the absence of light-driven primary production in these deep-sea ecosystems, mussels succeed reaching high biomasses in these harsh conditions thanks to chemosynthetic, carbon-fixing bacterial symbionts located in their gill tissue. Since the discovery of mussel symbioses about three decades ago our knowledge has increased, yet new findings are published regularly regarding their diversity, role and evolution. This article attempts to summarize current knowledge about symbiosis in Bathymodiolinae, focusing on mussel species for which information is available regarding both hosts and symbionts. Moreover, new data obtained from small mussels inhabiting sunken woods around the Philippines are provided. Indeed, mussel species from organic falls remain poorly studied compared to their vent and seep relatives despite their importance for the understanding of the evolution of symbiosis in the subfamily Bathymodiolinae. To cite this article: S. Duperron et al., C. R. Biologies 332 (2009).  相似文献   

2.
Bathymodioline mussels occur in chemosynthesis-based ecosystems such as cold seeps, hydrothermal vents and organic debris worldwide. Their key adaptation to these environments is their association with bacterial endosymbionts which ensure a chemosynthetic primary production based on the oxidation of reduced compounds such as methane and sulfide. We herein report a multiple symbiosis involving six distinct bacterial 16S rRNA phylotypes, including two belonging to groups not yet reported as symbionts in mytilids, in a small Idas mussel found on carbonate crusts in a cold seep area located north to the Nile deep-sea fan (Eastern Mediterranean). Symbionts co-occur within hosts bacteriocytes based on fluorescence in situ hybridizations, and sequencing of functional genes suggests they have the potential to perform autotrophy, and sulfide and methane oxidation. Previous studies indicated the presence of only one or two symbiont 16S rRNA phylotypes in bathymodioline mussels. Together with the recent discovery of four bacterial symbionts in the large seep species Bathymodiolus heckerae , this study shows that symbiont diversity has probably been underestimated, and questions whether the common ancestor of bathymodioline mussels was associated with multiple bacteria.  相似文献   

3.
Abstract. Bathymodiolus platifrons , a chemosynthetic mussel from cold seeps off Japan, relies for its nutrition on the productivity of methylotrophic or methanotrophic endosymbionts. High densities of bacterial symbionts appearing to be type I methanotrophs were observed in transmission electron micrographs of gill tissues. Methanol dehydrogenase activity in gill tissue from a single individual was positive compared to non-methanotrophic control samples, indicating a high potential for methanotrophy. Stable isotopic ratios of carbon in symbiont-containing gill tissue, as well as host tissues, were extremely depleted in 13C, and similar to values reported for other methanotrophic species. TEMs of gill tissue showing symbionts in various stages of digestion support the hypothesis that carbon transfer from symbionts to B. platifrons occurs through intracellular digestion of the symbionts. Discovery of methane- or methanolbased symbioses in B. platifrons from cold seeps in Sagami Bay extends the range of such symbioses to include cold seeps and hydrothermal vents, and supports the idea that environmental methane levels control the distribution of these symbioses.  相似文献   

4.
Symbiotic diversity in marine animals: the art of harnessing chemosynthesis   总被引:1,自引:0,他引:1  
Chemosynthetic symbioses between bacteria and marine invertebrates were discovered 30 years ago at hydrothermal vents on the Galapagos Rift. Remarkably, it took the discovery of these symbioses in the deep sea for scientists to realize that chemosynthetic symbioses occur worldwide in a wide range of habitats, including cold seeps, whale and wood falls, shallow-water coastal sediments and continental margins. The evolutionary success of these symbioses is evident from the wide range of animal groups that have established associations with chemosynthetic bacteria; at least seven animal phyla are known to host these symbionts. The diversity of the bacterial symbionts is equally high, and phylogenetic analyses have shown that these associations have evolved on multiple occasions by convergent evolution. This Review focuses on the diversity of chemosynthetic symbionts and their hosts, and examines the traits that have resulted in their evolutionary success.  相似文献   

5.
Idas argenteus (Bivalvia: Mytilidae) belongs to a genus of mussels that are often associated with sunken wood and vertebrate bones in the deep sea. By contrast to other species currently included within the genus Idas and other related genera, such as Bathymodiolus, I. argenteus was documented to lack chemosynthetic symbionts bacterial symbionts in its gills. In the present study, new specimens are assigned to I. argenteus based on shell and soft parts analysis. Molecular data confirm the absence or low abundance of symbionts. Phylogeny based on five genes indicates that the symbiont‐bearing I. washingtonius is the closest relative of I. argenteus. Symbiosis loss or extreme reduction is thus inferred to have occurred subsequent to the speciation event, 11–13 Mya. This is the first report of a loss of symbiosis within the clade of deep‐sea chemosynthetic mussels. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 398–405.  相似文献   

6.
The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4–21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles⩾9 mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.  相似文献   

7.
Parvatrema australis (Szidat, 1962) Szidat, 1965 was described based on larval stages found in specimens of the mussel Mytilus edulis from the Buenos Aires Province, Argentina. Although Szidat later examined hundreds of mussels, this parasite has never been found again until now. In the present study, larval stages, including germinal sacs, found in mytilids from the Patagonian coast were identified as P. australis. Metacercariae were incubated in vitro at 39 degrees C in physiological solution for 18-20 hours, by which time 80% of the specimens had eggs. P. australis is redescribed, on the basis of infective metacercariae and adults obtained in the laboratory, and is reassigned to Gymnophallus Odhner, 1900, the genus in which it was originally described. The generic diagnosis of Gymnophallus is here amended to include as diagnostic characters the presence or absence of the lateral lips, the form and position of the vitellarium (compact or follicular) and the presence of a pars prostatica (i.e. prostatic cells open into proximal part of the ejaculatory duct). The validity of some characters (i.e. the presence of lateral lips of the oral sucker, the form of the vitellarium and excretory vesicle, the extent of the uterus) as diagnostic at the generic level within the family Gymnophallidae is discussed. It is proposed that the least unambiguous characters that can be used to distinguish gymnophallid genera include the position of the ovary, the presence of a ventral pit and a pars prostatica, and caecal diverticula.  相似文献   

8.

Background

The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment.

Methodology/Principal Findings

We use data from the published scientific literature to: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm−2 d−1 across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also have the most uneven taxonomic structure, with fewer recruits represented by higher taxonomic levels (phyla, orders, classes) compared to seeps and wood and kelp falls, whereas the opposite is true at whale falls.

Conclusions/Significance

Based on our evaluation of the literature, the patterns and regulatory factors of the early history processes in chemosynthetic environments in the deep sea remain poorly understood. More research focused on these early life history stages will allow us to make inferences about the ecological and biogeographic linkages among the reducing habitats in the deep sea.  相似文献   

9.
The failure of depleted bivalve populations to recover naturally is often due to a breakdown in recruitment processes, such as a lack of larvae or suitable settlement substrate. The identification of these recruitment limitations are a critical initial step for determining an appropriate strategy for restoration. A lack of larval supply and settlement substrate have both been suggested as possible causes of the failure of natural recovery in the green‐lipped mussel population in the Hauraki Gulf, New Zealand, and were therefore examined in this study. Larval mussels settled throughout most of the year directly onto artificial collectors placed within restored adult mussel beds and in the immediate vicinity of the beds at comparatively lower levels than for remnant populations throughout New Zealand. This low settlement coupled with a lack of recruitment to the restored mussel beds suggests larval supply may be limited in the Hauraki Gulf and warrants further examinations into larval dispersal and retention. Larval settlement was also higher on collectors within mussel beds, suggesting the presence of adults enhances larval settlement and highlights the importance of transplanting adult mussels for reestablishing mussel populations.  相似文献   

10.
Bathymodiolin mussels occur at hydrothermal vents and cold seeps, where they thrive thanks to symbiotic associations with chemotrophic bacteria. Closely related genera Idas and Adipicola are associated with organic falls, ecosystems that have been suggested as potential evolutionary 'stepping stones' in the colonization of deeper and more sulphide-rich environments. Such a scenario should result from specializations to given environments from species with larger ecological niches. This study provides molecular-based evidence for the existence of two mussel species found both on sunken wood and bones. Each species specifically harbours one bacterial phylotype corresponding to thioautotrophic bacteria related to other bathymodiolin symbionts. Phylogenetic patterns between hosts and symbionts are partially congruent. However, active endocytosis and occurrences of minor symbiont lineages within species which are not their usual host suggest an environmental or horizontal rather than strictly vertical transmission of symbionts. Although the bacteria are close relatives, their localization is intracellular in one mussel species and extracellular in the other, suggesting that habitat choice is independent of the symbiont localization. The variation of bacterial densities in host tissues is related to the substrate on which specimens were sampled and could explain the abilities of host species to adapt to various substrates.  相似文献   

11.
Kinship relations within populations of unionicolid water mites are not well known, owing to their complex life cycles and the fact that interactions between active and resting stages for some species are transitory. A number of species of unionicolid water mites are, however, obligate symbionts of freshwater mussels and spend most of their life cycle in association with these hosts. Among these species of mites, parents and offspring are more likely to co-occur and thus provide opportunities to address questions related to the structure of the mating system. The present study employs random amplified polymorphic DNA (RAPD) analysis to address kinship within populations of Unionicola foili living in symbiotic association with the host mussel Utterbackia imbecillis. DNA was amplified from adult mites and a representative number of eggs or larvae (n = 20-30) that were removed from mussels collected on three separate occasions (July, November, and March) over a 12-month period. Parsimony analyses of the molecular data for adults and progeny collected from mussels during July, November, and March revealed distinct groupings, that for the most part, corresponded to mites collected from each of the sampling periods. Many of the genetic markers obtained for male and female U. foili were not evident among the larvae or eggs, suggesting that adults obtained from a host mussel at the time of collection were not the parents of a majority of the progeny. However, female mites and eggs collected from mussels during March and November shared more markers than did females and progeny examined during July. Furthermore, many offspring in the July sampling period were found to have one or more parents absent from the sampled population. Overall, RAPD profiling appears to have limited usage in determining kinship within populations of U. foili, due to its recruitment patterns, and the relatively large number of adults and progeny per mussel. It may, however, prove to be a useful method for assessing genetic relatedness among unionicolid mussel-mites that have substantially lower population densities.  相似文献   

12.
Bathymodiolus mussels associated with deep-sea hydrothermal vents and cold seeps harbor chemosynthetic endosymbiotic bacteria in bacteriocytes located in the gill epithelium. Two distinct morphotypes of γ-proteobacteria, sulfur- and methane-oxidizing, have been identified and form a dual symbiosis in B. azoricus mussels from the Mid-Atlantic Ridge and in B. aff. boomerang from cold seeps in the Gulf of Guinea. Thiotrophic bacteria (SOX) are capable of fixing CO2 in the presence of sulfide or thiosulfate and methanotrophic bacteria (MOX) use methane both as a carbon and an energy source. In this study we used quantitative real-time PCR to test whether symbiont abundance and gene expression varied between the two mussel species. Results showed that B. azoricus from two hydrothermal sites had similar ratios and gene expression pattern for both symbiont types. In B. aff. boomerang, SOX ratio and ATP sulfurylase gene expression show differences between specimens collected on the different sites. Analysis of symbiont ratios in both species indicated a clear dominance of MOX symbionts in B. aff. boomerang and SOX symbionts in B. azoricus. We also evidenced that the species from the deeper sites (B. aff. boomerang) and mussels collected from sulfur and methane rich habitats showed higher symbiont ratio suggesting that environmental parameters may have significant impacts on the symbiont ratios in Bathymodiolus mussels.  相似文献   

13.
The supply of larvae to the shore is important for population replenishment and intertidal community dynamics but its variability at most scales is not well understood. We tested the relationship between nearshore mussel larval abundance and intertidal settlement rates over several years at multiple spatiotemporal scales in Oregon and New Zealand. Abundance of competent larvae nearshore and intertidal recruitment rates were simultaneously quantified using collectors mounted at different depths on moorings 50-1100 m from shore, and at adjacent rocky intertidal sites. Total mussel larval abundance and oceanographic conditions were also measured in some locations. At all scales, abundance of nearshore mussel larvae was unrelated to intertidal recruitment rates. In the intertidal, patterns of mussel recruitment were persistent in space, with sites of consistently high or low recruitment. In contrast, nearshore competent larval abundance showed generally similar abundances among sites except for a high, and spatially-inconsistent, variability in Oregon during 1998 only. On moorings, recruitment tended to be greater on midwater collectors than shallower or deeper. Finally, on moorings larval abundance in traps and recruitment on collectors was unrelated. These results suggest that (1) among sites, the size of the nearshore larval pool is relatively uniform while onshore recruitment varies and is unrelated to larval abundance, (2) temporal variability in nearshore larval availability is not strongly expressed onshore, (3) vertical stratification of competent larvae nearshore is strong and may influence transport and recruitment, and (4) within-coast variability in onshore recruitment is strongly driven by processes occurring locally within the surf zone that need to be studied to understand coastal recruitment dynamics.  相似文献   

14.
T. Kuroiwa  S. Kawano  M. Watanabe  T. Hori 《Protoplasma》1991,163(2-3):102-113
Summary The fate of chloroplast nuclei (cp-nuclei) and mitochondrial nuclei (mt-nuclei) was followed during gametogenesis in male and female coenocytic thalli in the anisogamous algaBryopsis maxima by epifluorescence microscopy, after staining with 4,6-diamidino-2-phenylindole (DAPI), by quantification of chloroplast DNA (cp-DNA) by fluorimetry using a video-intensified, photon-counting system (VIMPICS), and by CsCl density gradient centrifugation. The male and female coenocytic thalli, 48 h before the release of gametes, contain a large number of chloroplasts, each of which is larger in size than the cell nucleus and the mitochondria and contains about 150 cp-nuclei. The size of each chloroplast in the female and male gametangia decreases markedly during gametogenesis as a result of continuous divisions till about 10 h before the release of gametes and, eventually, the numbers of cp-nuclei per chloroplast in the male and female gametangia fall to about 20 and 5, respectively. Two hours later, as the preferential digestion of cp-DNA in the male gametangium occurs, the number of cp-nuclei in the chloroplast of each male gamete falls to zero while the number of cp-nuclei in female gamete does not change, even after release of female gametes. Several mt-nuclei are observed in all of the female gametes. By contrast, the mt-nuclei in the bulk of the male gametes disappear but those in a few gametes remain. The profiles after CsCl density gradient centrifugation of DNAs extracted from male and female plants and gametes support the cytological data. The results suggest that the preferential digestion of cp-DNA in male plants occurs about 8 h before the release of gametes and that there is differential digestion of cp-DNA and mitochondrial DNA (mt-DNA).  相似文献   

15.
Reichard  M. 《Journal of fish biology》2003,63(S1):255-255
Bitterlings (Acheilognatinae) are a monophyletic group of cyprinid fishes that lay their eggs in the gill chamber of freshwater mussels. They have evolved many behavioural, morphological and physiological adaptations to the symbiosis. Female bitterling develop a long ovipositor that insert into the exhalant siphon of a mussel and males fertilize the eggs by releasing sperm over the inhalant siphon of the mussel. Embryos hatch within 2 days but develop inside the mussel for further 3 to 6 weeks. Embryos are adapted to the low oxygen environment in the mussel's gill chamber. Both males and females discriminate among mussels in relation to their quality as host for developing embryos. On the other hand, mussels used for oviposition have larvae that obligate ectoparasites on fish. Here I review current knowledge on the status of the symbiosis, developmental and behavioural adaptations by bitterling and mussel and summarize costs and benefits to both symbionts. Further, I use a recent well‐resolved bitterling phylogeny to emphasize the potential of this model system to study the evolution of this symbiosis, which is a part of the ongoing study.  相似文献   

16.
Kinship relations within populations of unionicolid water mites are not well known, owing to their complex life cycles and the fact that interactions between active and resting stages for some species are transitory. A number of species of unionicolid water mites are, however, obligate symbionts of freshwater mussels and spend most of their life cycle in association with these hosts. Among these species of mites, parents and offspring are more likely to co-occur and thus provide opportunities to address questions related to the structure of the mating system. The present study employs random amplified polymorphic DNA (RAPD) analysis to address kinship within populations of Unionicola foili living in symbiotic association with the host mussel Utterbackia imbecillis. DNA was amplified from adult mites and a representative number of eggs or larvae (n = 20-30) that were removed from mussels collected on three separate occasions (July, November, and March) over a 12-month period. Parsimony analyses of the molecular data for adults and progeny collected from mussels during July, November, and March revealed distinct groupings, that for the most part, corresponded to mites collected from each of the sampling periods. Many of the genetic markers obtained for male and female U. foili were not evident among the larvae or eggs, suggesting that adults obtained from a host mussel at the time of collection were not the parents of a majority of the progeny. However, female mites and eggs collected from mussels during March and November shared more markers than did females and progeny examined during July. Furthermore, many offspring in the July sampling period were found to have one or more parents absent from the sampled population. Overall, RAPD profiling appears to have limited usage in determining kinship within populations of U. foili, due to its recruitment patterns, and the relatively large number of adults and progeny per mussel. It may, however, prove to be a useful method for assessing genetic relatedness among unionicolid mussel-mites that have substantially lower population densities.  相似文献   

17.
An effective constant dose (55 μg) of precocene II (PII) was topically tested against the last three instars of Spodoptera littoralis (Boisd.) larvae. Application of PII induced morphogenetic abnormalities typical of juvenile hormone (JH) excess. The resultant imperfect insects included larval‐pupal mosaic and partial or severe cases of untanned pupae. The sixth‐instar larvae were more sensitive to PII administration than the two preceding instars. However, sensitivity of the last larval instar to PII varied with the timing of dose application relative to the developmental status of the larvae. Whereas the newly ecdysed (0‐day old) larvae were more sensitive, the older larvae of the same sixth‐instar showed sharp decrease in their sensitivity to PII with a concomitant increase of their age. Application of a single dose (5 μg) of JH I to PII pre‐treated larvae significantly (P < 0.001) reduced the production of imperfect insects where many PH‐treated larvae developed successfully to apparent normal pupae. Although a single dose of PII was more effective on S. littoralis larvae than repeated daily doses, the effectiveness of JHI‐therapy to PH pre‐treated larvae by repeated doses was less effective in producing perfect insects than JH‐therapy to PII pre‐treated larvae by single doses. The reversal of any of these by applied JHI is quite interesting but the mechanisms remain to be unraveled.  相似文献   

18.
Many bivalvian mollusks have a sperm-transmitted mitochondrial genome (M), along with the standard egg-transmitted one (F). The phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, is the only known case in which biparental inheritance of a cytoplasmic genome is the rule rather than the exception. In the mussel Mytilus sperm mitochondria disperse randomly among blastomeres in female embryos, but form an aggregate and stay in the same blastomere in male embryos. In adults, somatic tissues of both sexes are dominated by the F genome. Sperm contains only the M genome and eggs the F (and perhaps traces of M). A female produces mostly daughters, mostly sons, or both sexes in about equal numbers, irrespective of its mate. Thus maleness and M mtDNA fate are tightly linked and under maternal control. Hybridization and triploidization affect the former but not the latter, which suggests that the two are not causally linked. Gene content and arrangement are the same in conspecific F and M genomes, but primary sequence has diverged from 20 % to 40 %, depending on species. The two genomes differ at the control region (CR). Synonymous substitutions accumulate faster in the M than the F genome and non-synonymous even faster. Expression studies indicate that the M genome is active only at spermatogenesis. These observations suggest that the M genome is under a more relaxed selective constraint than the F. Some mytilid species carry, in low frequencies, sperm-transmitted mtDNAs whose primary sequence is of the F type and the CR is an F/M mosaic (“masculinized” genomes). In venerids sperm mitochondria behavior, M genome fate and sex determination are as in mytilids. In unionids the M genome also evolves faster than the F and F/M sequence divergence reaches 50 %. The identification of F-specific and M-specific open reading frames in non-coding regions of unionids and mytilids, in conjunction with the CR’s mosaic structure of masculinized genomes, suggest that the mitochondrial genomes of species with DUI carry sequences that affect their transmission route. A model that incorporates these findings is presented in this review.  相似文献   

19.
Uniparental inheritance of cytoplasmic elements is widespread among eukaryotic organisms and is achieved by a diverse range of mechanisms. This paper shows that the cytoplasmic genetic system would be expected to evolve towards uniparental inheritance, given the existence of deleterious symbionts capable of invading the host cytoplasm together with nuclear genes that lead to the elimination of cytoplasmic elements from one of the gamete types. The reason for this is that, under biparental inheritance, foreign symbionts with strong deleterious effects are able to spread through host populations. A nuclear modifier gene which leads to the loss of cytoplasmic elements from one gamete type gains a net advantage as a symbiont spreads, because the modifier sometimes gives rise to a symbiont-free zygote. Insofar as small gametes reduce the rate of symbiont transmission to the zygote, modifier genes causing small gamete size would tend to accumulate, so that cytoplasmic inheritance would become associated with maternal rather than paternal gametes. Once uniparental inheritance predominates in the host population, the population is protected from invasions by a large class of harmful symbionts, but at the same time those symbionts that benefit their hosts are still able to increase in frequency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号