首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of pyrazolyl-thiazolinone derivatives (E1-E36) have been designed and synthesized and their biological activities were also evaluated as potential EGFR and HER-2 kinase inhibitors. Thirty-four of the 36 compounds were reported for the first time. Among them, compound 2-(5-(4-bromophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (E28) displayed the most potent inhibitory activity (IC(50)=0.24μM for EGFR and IC(50)=1.07μM for HER-2). Antiproliferative assay results indicated that compound E28 owned high antiproliferative activity against MCF-7, B16-F10 and HCT-116 in vitro, with IC(50) value of 0.30, 0.54, and 0.70μM, respectively. Docking simulation was further performed to position compound E28 into the EGFR active site to determine the probable binding model. Based on the preliminary results, compound E28 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

2.
A type of novel 4,6-substituted-(diaphenylamino)quinazolines, which designed based on the 4-(phenylamino)quinazoline moiety, have been discovered as potential EGFR inhibitors. These compounds displayed good antiproliferative activity and EGFR-TK inhibitory activity. Especially, 4-((4-(3-bromophenylamino)quinazolin-6-ylamino)methyl)phenol (5b), showed the most potent inhibitory activity (IC(50)=0.28μM for Hep G2, IC(50)=0.59μM for A16-F10 and IC(50)=0.87μM for EGFR) and effectively induces apoptosis in a dose-dependent manner in the Hep G2 cell line. Molecular docking of 5b into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.  相似文献   

3.
Leucine-rich repeat kinase 2 (LRRK2) is linked to Parkinson's disease and may represent an attractive therapeutic target. Here we report a 2,4-dianilino-5-chloro-pyrimidine, TAE684, a previously reported inhibitor of anaplastic lymphoma kinase (ALK), is also a potent inhibitor of LRRK2 kinase activity (IC(50) of 7.8nM against wild-type LRRK2, 6.1nM against the G2019S mutant). TAE684 substantially inhibits Ser910 and Ser935 phosphorylation of both wild-type LRRK2 and G2019S mutant at a concentration of 0.1-0.3μM in cells and in mouse spleen and kidney, but not in brain, following oral doses of 10mg/kg.  相似文献   

4.
5.
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.  相似文献   

6.
A series of N,1,3-triphenyl-1H-pyrazole-4-carboxamide derivatives have been designed, synthesized and evaluated for their potential antiproliferation activity and Aurora-A kinase inhibitory activity. Among all the compounds, compound 10e possessed the most potent biological activity against HCT116 and MCF-7 cell lines with IC(50) values of 0.39±0.06μM and 0.46±0.04 μM, respectively, which were comparable to the positive control. Compound 10e also exhibited significant Aurora-A kinase inhibitory activity (IC(50)=0.16±0.03 μM). Docking simulation was performed to position compound 10e into the active site of Aurora-A kinase, in order to get the probable binding model for further study. The results of Western-blot assay demonstrated that compound 10e possessed good Aurora-A kinase inhibitory activity against HCT116. Based on the preliminary results, it is deduced that compound 10e with potent Aurora-A kinase inhibitory activity may be a potential anticancer agent.  相似文献   

7.
Insulin-like growth factor-I (IGF-I) stimulated Xenopus laevis oocyte ribosomal S6 kinase activity 5- to 10-fold, with an apparent EC50 of 0.8 +/- 0.1 nM after 90 min of hormone treatment. IGF-I-stimulated enzyme activity was inhibited by treatment of oocytes with nonselective phosphodiesterase (PDE) inhibitors, with apparent IC50 values of 2 +/- 1 microM papaverine, 20 +/- 2 microM isobutylmethylxanthine, and 128 +/- 16 microM theophylline. Type III PDE inhibitors also inhibited IGF-I-stimulated S6 kinase activity with IC50 values of 9.7 +/- 0.3 microM Cl-930 and 84 +/- 23 microM imazodan (Cl-914). These drugs apparently affected an intracellular molecular event leading to activation of S6 kinase, since Cl-930 prevented IGF-I-stimulation of S6 kinase, but had no direct inhibitory effect when added to the S6 kinase enzyme assay mixture. While hormone-stimulated S6 kinase activity was inhibited by isobutylmethylxanthine (nonselective PDE inhibitor) and Cl-930 (PDE III inhibitor), Ro 20, 1724 and rolipram (PDE IV inhibitors) and dipyridamole (PDE V inhibitor) had no significant effect on activated enzyme levels. The time course for IGF-I stimulation of oocyte S6 kinase displayed a small early peak of activity approximately 0.15-0.4 time required for 50% of cell population to display white spots (GVBD50) and a second major increase in activity at 0.6-0.7 GVBD50 that was sustained until meiotic maturation was complete. The second wave of enzyme activation was inhibited by Cl-930, but the early increase was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Extractive substances obtained from the bark of aspen (Populus tremula L.) with the use of petroleum ether (lipids I) and diethyl ether (lipids II) have exhibited high antibacterial activity with respect to Streptococcus pneumoniae and Haemophilus influenzae, causing 100% cell destruction. The minimum inhibiting concentration for S. pneumoniae has been found to be 0.5 - 50 mg/ml for lipids I and 0.0005 - 0.5 mg/ ml for lipids II, depending on the strain of bacteria. The antibacterial activity of rhytidome extracts is somewhat higher than that of phloem extracts. To suppress the growth of H. influenzae, more concentrated solutions of these extracts from 30 to 50 mg/ml are needed. Staphylococcus aureus was resistent in lipids. The action of temperature, mineral acids and alkali on lipids, as well as prolonged storage of strains in a refrigerator decreases the antibacterial activity of extracts under study.  相似文献   

9.
Claisen-Schmidt condensation of 3-formyl-9-methylcarbazole with various amides of 3-aminoacetophenone afforded N-{3-[3-(9-methyl-9H-carbazol-3-yl)-acryloyl]-phenyl}-benzamide/amide derivatives. All compounds were investigated for their in vitro xanthine oxidase (XO), tyrosinase and melanin production inhibitory activity. Most of the target compounds had more potent XO inhibitory activity than the standard drug (IC(50)=4.3-5.6μM). Interestingly, compound 7q bearing cyclopropyl ring was found to be the most potent inhibitor of XO (IC(50)=4.3μM). Molecular modelling study gave an insight into its binding modes with XO. Compounds 7a, 7d, 7e, 7g, and 7k were found to be potent inhibitors of tyrosinase (IC(50)=14.01-17.52μM). These results suggest the possible use of these compounds for the design and development of novel XO and tyrosinase inhibitors.  相似文献   

10.
Bisorbicillinol, which is isolated from Trichoderma sp. USF2690, is an inhibitor of β-hexosaminidase release and tumor necrosis factor (TNF)-α, and Interleukin (IL)-4 secretion from rat basophilic leukemia (RBL-2H3) cells, with IC50 values of 2.8?μM, 2.9?μM and 2.8?μM respectively. We showed that the inhibitory mechanism of β-hexosaminidase release and TNF-α secretion involved inhibition of Lyn, a tyrosine kinase. The inhibitory activities of bisorbicillinol indicate that this compound is a new candidate anti-allergic agent.  相似文献   

11.
PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in?vitro. Here, we?report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC(50) value of 2.5?μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.  相似文献   

12.
New substituted (1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acids were designed as the inhibitor of AKR1B1 based upon the structure of rhetsinine, a minor alkaloidal component of Evodia rutaecarpa, and twenty derivatives were synthesized and evaluated. The most active compound of the series was (2-benzyl-6-methoxy-1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acid (7m), which showed comparable inhibitory activity for AKR1B1 (IC(50)=0.15μM) with clinically used epalrestat (IC(50)=0.1μM). In the view of activity and selectivity, the most potent compound was (2-benzyl-6-carboxy-1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acid (7t), which showed strong inhibitory effect (IC(50)=0.17μM) and very high selectivity for AKR1B1 against AKR1A1 (311:1) and AKR1B10 (253:1) compared with epalrestat.  相似文献   

13.
Several indole esters were tested as inhibitors of tyrosine kinase p60c-Src. Compound (4) was found fairly active against the enzyme with IC50=1.34?μM. DOCK methodology was used to asses our inhibitors for their inhibitory potency against tyrosine kinase. The docking results showed that compounds (4), (25) and (26) were bound to the active site of the enzyme Lys 295 of p60c-Src tyrosine kinase. Both activity and docking studies showed a parallel result, with compound (4) having a better interaction with the enzyme active site and also greater activity than the other compounds, indicating a potential role as new lead inhibitor.  相似文献   

14.
Fourty-two thiazolyl-pyrazoline derivatives were synthesized to screen for their EGFR kinase inhibitory activity. Compound 4-(4-chlorophenyl)-2-(3-(3,4-dimethylphenyl)-5-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)thiazole (11) displayed the most potent EGFR TK inhibitory activity with IC(50) of 0.06 μM, which was comparable to the positive control. Molecular docking results indicated that compound 11 was nicely bound to the EGFR kinase. Compound 11 also showed significant antiproliferative activity against MCF-7 with IC(50) of 0.07 μM, which would be a potential anticancer agent.  相似文献   

15.
Acute otitis media (AOM) is one of the most common infectious diseases in children. Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis, Gram-negative bacteria, are considered major pathogens of AOM and respiratory tract infections. In this study, we used monophosphoryl lipid A (MPL) as a Toll-like receptor (TLR4) agonist to induce innate immune responses before challenge with NTHi and M.?catarrhalis to enhance bacterial clearance from the nasopharynx. Mice were intranasally administered 40, 10, or 1?μg of MPL and challenged with NTHi and M.?catarrhalis 12 and 24?h later. At 6 and 12?h after the bacterial challenge, the mice were killed and nasal washes were collected. The numbers of NTHi, M.?catarrhalis, and inflammatory cells were quantitated. Inoculation of MPL produced a significant reduction in the number of bacteria recovered from the nasopharynx at 6 and/or 12?h after the bacterial challenge, when compared with control mice. The effect was dose dependent. MPL inoculation also induced the early accumulation of neutrophils in the nasopharynx after exposure to bacteria. MPL is effective for eliciting clearance of both NTHi and M.?catarrhalis from the nasopharynx. These results indicate the possibility of a new strategy against Gram-negative bacterial infection that involves the stimulation of the innate immune system by TLR4 agonists such as MPL.  相似文献   

16.
Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ?1 μM at 24 h after treatment and ?0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.  相似文献   

17.
Bisindolylmethane thiosemicarbazides 1-18 were synthesized, characterized by 1H NMR and ESI MS and evaluated for urease inhibitory potential. All analogs showed outstanding urease inhibitory potentials with IC50 values ranging between 0.14?±?0.01 to 18.50?±?0.90?μM when compared with the standard inhibitor thiourea having IC50 value 21.25?±?0.90?μM. Among the series, analog 9 (0.14?±?0.01?μM) with di-chloro substitution on phenyl ring was identified as the most potent inhibitor of urease. The structure activity relationship has been also established on the basis of binding interactions of the active analogs. These binding interactions were identified by molecular docking studies.  相似文献   

18.
In this study we identified two heterocyclic compounds (5 and 6) as potent and specific inhibitors of CK1δ (IC(50)?=?0.040 and 0.042?μM, respectively). Whereas compound 5 exhibited fivefold higher affinity towards CK1δ than to CK1ε (IC(50) CK1ε?=?0.199?μM), compound 6 also inhibited CK1ε (IC(50)?=?0.0326?μM) in the same range as CK1δ. Selected compound 5 was screened over 442 kinases identifying 5 as a highly potent and selective inhibitor of CK1δ. X-ray analysis of 5 bound to CK1δ demonstrated its binding mode. In addition, characterization of 5 and 6 in a cell biological approach revealed the ability of both compounds to inhibit proliferation of tumor cell lines in a dose and cell line specific manner. In summary, our optimizations lead to the development of new highly selective CK1δ and ε specific inhibitors with biological activity.  相似文献   

19.
In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.  相似文献   

20.
Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate (ThDP)- and flavin adenine dinucleotide (FAD)-dependent plant and microbial enzyme that catalyzes the first common step in the biosynthesis of essential amino acids such as leucine, isoleucine and valine. To identify strong potent inhibitors against Shigella sonnei (S. sonnei) AHAS, we cloned and characterized the catalytic subunit of S. sonnei AHAS and found two potent chemicals (KHG20612, KHG25240) that inhibit 87-93% S. sonnei AHAS activity at an inhibitor concentration of 100uM. The purified S. sonnei AHAS had a size of 65kDa on SDS-PAGE. The enzyme kinetics revealed that the enzyme has a K(m) of 8.01mM and a specific activity of 0.117U/mg. The cofactor activation constant (K(s)) for ThDP and (K(c)) for Mg(++) were 0.01mM and 0.18mM, respectively. The dissociation constant (K(d)) for ThDP was found to be 0.14mM by tryptophan fluorescence quenching. The inhibition kinetics of inhibitor KHG20612 revealed an un-competitive inhibition mode with a K(ii) of 2.65mM and an IC(50) of 9.3μM, whereas KHG25240 was a non-competitive inhibitor with a K(ii of) 5.2mM, K(is) of 1.62mM and an IC(50) of 12.1μM. Based on the S. sonnei AHAS homology model structure, the docking of inhibitor KHG20612 is predicted to occur through hydrogen bonding with Met 257 at a 1.7? distance with a low negative binding energy of -9.8kcal/mol. This current study provides an impetus for the development of a novel strong antibacterial agent targeting AHAS based on these potent inhibitor scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号