首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frommolt R  Goss R  Wilhelm C 《Planta》2001,213(3):446-456
In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar Km value for Vx, shows a substantially increased Km for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.  相似文献   

2.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

3.
Macko S  Wehner A  Jahns P 《Planta》2002,216(2):309-314
The enzyme violaxanthin de-epoxidase (VxDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of membrane-bound violaxanthin (Vx) to zeaxanthin. De-epoxidation from the opposite, stroma side of the membrane has been investigated in the npq1 mutant from Arabidopsis thaliana (L.) Heynh. - which lacks VxDE - by adding partially purified VxDE from spinach thylakoids. The accessibility of Vx to the exogenously added enzyme (exoVxDE) and the kinetics of Vx conversion by the exoVxDE in thylakoids from npq1 plants were very similar to the characteristics of Vx conversion by the endogenous enzyme (endoVxDE) in thylakoids from wild-type plants. However, the conversion of Vx by exoVxDE was clearly retarded at lower temperatures when compared with the reaction catalyzed by endoVxDE. Since the exoVxDE - in contrast to the endoVxDE - has no access to the stacked regions of the membrane, where the xanthophylls bound to photosystem II are located, these results support the assumption of pronounced diffusion of xanthophylls within the thylakoid membrane.  相似文献   

4.
The xanthophyll cycle (Xc), which involves violaxanthin de-epoxidase (VDE) and the zeaxanthin epoxidase (ZEP), is one of the most rapid and efficient responses of plant and algae to high irradiance. High light intensity can activate VDE to convert violaxanthin (Vx) to zeaxanthin (Zx) via antheraxanthin (Ax). However, it remains unclear whether VDE remains active under low light or dark conditions when there is no significant accumulation of Ax and Zx, and if so, how the ΔpH required for activation of VDE is built. In this study, we used salicylaldoxime (SA) to inhibit ZEP activity in the intertidal macro-algae Ulva sp. (Ulvales, Chlorophyta) and then characterized VDE under low light and dark conditions with various metabolic inhibitors. With inhibition of ZEP by SA, VDE remained active under low light and dark conditions, as indicated by large accumulations of Ax and Zx at the expense of Vx. When PSII-mediated linear electron transport systems were completely inhibited by SA and DCMU, alternative electron transport systems (i.e., cyclic electron transport and chlororespiration) could maintain VDE activity. Furthermore, accumulations of Ax and Zx decreased significantly when SA, DCMU, or DBMIB together with an inhibitor of chlororespiration (i.e., propyl gallate (PG)) were applied to Ulva sp. This result suggests that chlororespiration not only participates in the build-up of the necessary ΔpH, but that it also possibly influences VDE activity indirectly by diminishing the oxygen level in the chloroplast.  相似文献   

5.
When the leaf segments of rice (Oryza sativa L.) plants were subjected to chilling in the moderate light, zeaxanthin (Zx) formation was faster in a chilling-tolerant Dongjin-byeo (DJ) than in a chilling-sensitive IR841. Although the rate of Zx formation was accelerated by the treatment of 5 mM salicylaldoxime, an inhibitor of Zx epoxidase (ZE), there was almost no changes in DJ. A similar result was observed when leaf segments were treated with 50 mM sodium fluoride, a potent inhibitor of chloroplast phosphatase. The slow Zx epoxidation in IR841 during light-chilling was confirmed in leaf segments treated with 10 mM dithiothreitol, an inhibitor of violaxanthin de-epoxidase (VDE). However, the differences between the two cultivars were not observed at 25oC. These results suggest that compared with IR841 the higher rate of Zx formation in DJ is not due to the higher VDE activity in DJ but is due to more rapid down-regulation of ZE in DJ, possibly by its phosphorylation. Compared with DJ, IR841 accumulated more superoxide with PSI inactivation during light-chilling, which eliminates the possibility of increased ZE down-regulation in DJ leaves by photo-oxidation. In vitro study with alkaline phosphatase supports the idea of down-regulation of ZE by phosphorylation under light-chilling condition. We propose that this reversible down-regulation of Zx epoxidation possibly by the phosphorylation of ZE is an important regulation mechanism of violaxanthin cycle that confers chilling tolerance of a rice cultivar under chilling stress in the light with moderate intensities.  相似文献   

6.
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of epoxidation was found to be gradually retarded with increasing light stress during pre-illumination, indicating a gradual down-regulation of the Zx epoxidase activity. Retardation of the epoxidation rates by a factor of up to 10 was inducible either by increasing the light intensity or by extending the illumination time or by decreasing the temperature during pre-illumination. The retardation of the epoxidation kinetics was correlated with a decrease of the PSII quantum efficiency after the pre-illumination treatment. Experiments with the stn7/stn8 mutant of Arabidopsis indicated that the thylakoid protein kinases STN7 and STN8, which are required for the phosphorylation of PSII proteins, are not involved in the short-term down-regulation of Zx epoxidation. However, the retardation of Zx epoxidation was maintained in thylakoids isolated from pre-illuminated leaves, indicating that a direct modification of the Zx epoxidase is most likely involved in the light-induced down-regulation.  相似文献   

7.
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.  相似文献   

8.
Kalituho L  Rech J  Jahns P 《Planta》2007,225(2):423-439
To evaluate the role of specific xanthophylls in light utilization, wild-type and xanthophyll mutant plants (npq1, npq2, lut2, lut2npq1 and lut2npq2) from Arabidopsis thaliana were grown under three different light regimes: 30 (low light, LL), 150 (medium light, ML) and 450 (high light, HL) μmol photons m−2 s−1. We studied the pigment content, growth rate, xanthophyll cycle activity, chlorophyll fluorescence parameters and the response to photoinhibition. All genotypes differed strongly in the growth rates and the resistance against photoinhibition. In particular, replacement of lutein (Lut) by violaxanthin (Vx) in the lut2npq1 mutant did not affect the growth at non-saturating light intensities (LL and ML), but led to a pronounced reduction of growth under HL conditions, indicating an important photoprotective role of Lut. This was further supported by a much higher sensitivity of all Lut-deficient plants to photoinhibition in comparison with the wild type. In contrast, replacement of Lut by zeaxanthin (Zx) in lut2npq2 led to a pronounced reduction of growth under all light regimes, most likely related to the permanent non-photochemical dissipation of excitation energy by Zx at Vx-binding sites and the destabilization of antenna proteins by binding of Zx to Lut-binding sites. The high susceptibility of lut2npq2 to photoinhibition in comparison with npq2 further indicated that the photoprotective function of Zx is abolished in the absence of Lut. Thus, it can be concluded from our work that neither Vx nor Zx is able to fulfil the essential photoprotective function at Lut-binding sites under in vivo conditions.  相似文献   

9.
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal structure-forming lipids MGDG and PE are able to solubilize Ddx and Vx at much lower lipid concentrations than bilayer-forming lipids DGDG and PC. We furthermore found that, in the presence of MGDG or PE, Ddx is much more solubilizable than Vx. This substantial difference in Ddx and Vx solubility directly affects the respective de-epoxidation reactions. Ddx de-epoxidation by the diatom DDE is saturated at much lower MGDG or PE concentrations than Vx de-epoxidation by the higher-plant VDE. Another important result of our study is that bilayer-forming lipids DGDG and PC are not able to induce efficient xanthophyll de-epoxidation. Even in the presence of high concentrations of DGDG or PC, where Ddx and Vx are completely solubilized, a strongly inhibited Ddx de-epoxidation is observed, while Vx de-epoxidation by VDE is completely absent. This indicates that the inverted hexagonal phase domains provided by lipid MGDG or PE are essential for de-epoxidase activity. We conclude that in the natural thylakoid membrane MGDG serves to solubilize the xanthophyll cycle pigments and furthermore provides inverted hexagonal structures associated with the membrane bilayer, which are essential for efficient xanthophyll de-epoxidase activity.  相似文献   

10.
In the present study, we investigated the epoxidation reaction of the violaxanthin (Vx) cycle in intact cells of Chlorella vulgaris. Our results show that the overall epoxidation is slightly slower in darkness compared to the epoxidation during high light (HL) illumination. The calculation of the rate constants of the two epoxidation steps revealed that, for both conditions, the first epoxidation step from zeaxanthin (Zx) to antheraxanthin (Ax) is faster than the second epoxidation step from Ax to Vx. However, the most noteworthy result of our present study is that Ax, which is transiently formed during the epoxidation reaction, participates in non-photochemical quenching of chlorophyll fluorescence (NPQ). A correlation between NPQ and the de-epoxidized xanthophyll cycle pigments during the time-course of the epoxidation reaction can only be achieved when NPQ is plotted versus the sum of Zx and Ax. The accumulation of significant amounts of Ax during the epoxidation reaction further indicates that Ax-dependent quenching proceeds with a similar efficiency compared to the Zx-mediated NPQ. As the xanthophyll-dependent NPQ relies on the presence of de-epoxidized xanthophylls in the PS II antenna, Ax-dependent NPQ is only possible under the assumption that Ax rebinds to the light-harvesting complex (LHC) II during the epoxidation reaction.  相似文献   

11.
12.
Kalituho L  Beran KC  Jahns P 《Plant physiology》2007,143(4):1861-1870
Upon the transition of dark-adapted plants to low light, the energy-dependent quenching (qE) of excitation energy is only transiently induced due to the only transient generation of the transthylakoid pH gradient. We investigated the transient qE (qE(TR)) in different Arabidopsis (Arabidopsis thaliana) mutants. In dark-adapted plants, qE(TR) was absent in the npq4 mutant (deficient in the PsbS protein) and the pgr1 mutant (restricted in lumen acidification). In comparison with wild-type plants, qE(TR) was reduced in the zeaxanthin (Zx)-deficient npq1 mutant and increased in the Zx-accumulating npq2 mutant. After preillumination of plants (to allow the synthesis of large amounts of Zx), the formation and relaxation of qE(TR) was accelerated in all plants (except for npq4) in comparison with the respective dark-adapted plants. The extent of qE(TR), however, was unchanged in npq1 and npq4, decreased in npq2, but increased in wild-type and pgr1 plants. Even in presence of high levels of Zx, qE(TR) in pgr1 mutants was still lower than that in wild-type plants. In the presence of the uncoupler nigericin, qE(TR) was completely abolished in all genotypes. Thus, the transient qE(TR) shows essentially the same characteristics as the steady-state qE; it is strictly dependent on the PsbS protein and a low lumen pH, but the extent of qE(TR) is largely modulated by Zx. These results indicate that qE(TR) does not represent a different quenching mechanism in comparison with the steady-state qE, but simply reflects the response of qE to the dynamics of the lumen pH during light activation of photosynthesis.  相似文献   

13.
Clemens Reinhold 《BBA》2008,1777(5):462-469
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of epoxidation was found to be gradually retarded with increasing light stress during pre-illumination, indicating a gradual down-regulation of the Zx epoxidase activity. Retardation of the epoxidation rates by a factor of up to 10 was inducible either by increasing the light intensity or by extending the illumination time or by decreasing the temperature during pre-illumination. The retardation of the epoxidation kinetics was correlated with a decrease of the PSII quantum efficiency after the pre-illumination treatment. Experiments with the stn7/stn8 mutant of Arabidopsis indicated that the thylakoid protein kinases STN7 and STN8, which are required for the phosphorylation of PSII proteins, are not involved in the short-term down-regulation of Zx epoxidation. However, the retardation of Zx epoxidation was maintained in thylakoids isolated from pre-illuminated leaves, indicating that a direct modification of the Zx epoxidase is most likely involved in the light-induced down-regulation.  相似文献   

14.
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, [delta]pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all [delta]pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light.  相似文献   

15.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   

16.
Yamamoto HY 《Planta》2006,224(3):719-724
Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 μM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 μM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.  相似文献   

17.
PSII membranes were used as a substrate for violaxanthin de-epoxidase(VDE) that had been solubilized from spinach thylakoids by sonication.Inclusion of Tween 20 in the assay mixture was essential, althoughthe detergent apparently inhibited the activity in the conventionalassay with purified violaxanthin and lipid as substrate. Themaximum enhancing effect of the detergent was observed nearits critical micellar concentration. It is likely that the monomerof the detergent helped VDE react with the substrate in themembranes. Dependence of the activity on the substrate concentrationsuggested that VDE functions at least at two sites in the membranes,probably on both their lumenal and stromal surfaces. The abilityof the enzyme to function on the stromal surface in in vitroassays was demonstrated by using intact thylakoids as the substrate.Under such conditions where the endogenous VDE was functioningin the lumen, the exogenously added VDE converted an-theraxanthinto zeaxanthin in the absence of Tween 20. This result suggeststhat, in the reaction with PSII membranes, the detergent wasrequired for VDE to react with violaxanthin but not with antheraxanthin.Otherwise, the detergent was necessary for the reaction on thelumenal surface. (Received September 5, 1997; Accepted October 19, 1997)  相似文献   

18.
Photosynthetic organisms need protection against excessive light. By using non‐photochemical quenching, where the excess light is converted into heat, the organism can survive at higher light intensities. This process is partly initiated by the formation of zeaxanthin, which is achieved by the de‐epoxidation of violaxanthin and antheraxanthin to zeaxanthin. This reaction is catalyzed by violaxanthin de‐epoxidase (VDE). VDE consists of three domains of which the central lipocalin‐like domain has been the most characterized. By truncating the domains surrounding the lipocalin‐like domain, we show that VDE activity is possible without the C‐terminal domain but not without the N‐terminal domain. The N‐terminal domain shows no VDE activity by itself but when separately expressed domains are mixed, VDE activity is possible. This shows that these domains can be folded separately and could therefore be studied separately. An increase of the hydrodynamic radius of wild‐type VDE was observed when pH was lowered toward the pH required for activity, consistent with a pH‐dependent oligomerization. The C‐terminally truncated VDE did not show such an oligomerization, was relatively more active at higher pH but did not alter the KM for ascorbate. Circular dichroism measurements revealed the presence of α‐helical structure in both the N‐ and C‐terminal domains. By measuring the initial formation of the product, VDE was found to convert a large number of violaxanthin molecules to antheraxanthin before producing any zeaxanthin, favoring a model where violaxanthin is bound non‐symmetrically in VDE.  相似文献   

19.
Goss R 《Planta》2003,217(5):801-812
The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.  相似文献   

20.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号