首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A growing body of evidence indicates that renal tissue injuries are reversible. We investigated whether dietary salt reduction with the combination therapy of angiotensin II type 1 receptor blocker (ARB) plus calcium channel blocker (CCB) reverses renal tissue injury in Dahl salt-sensitive (DSS) hypertensive rats. DSS rats were fed a high-salt diet (HS; 4% NaCl) for 4 weeks. Then, DSS rats were given one of the following for 10 weeks: HS diet; normal-salt diet (NS; 0.5% NaCl), NS + an ARB (olmesartan, 10 mg/kg/day), NS + a CCB (azelnidipine, 3 mg/kg/day), NS + olmesartan + azelnidipine or NS + hydralazine (50 mg/kg/day). Four weeks of treatment with HS diet induced hypertension, proteinuria, glomerular sclerosis and hypertrophy, glomerular podocyte injury, and tubulointerstitial fibrosis in DSS rats. A continued HS diet progressed hypertension, proteinuria and renal tissue injury, which was associated with inflammatory cell infiltration and increased proinflammatory cytokine mRNA levels, NADPH oxidase activity and NADPH oxidase-dependent superoxide production in the kidney. In contrast, switching to NS halted the progression of hypertension, renal glomerular and tubular injuries. Dietary salt reduction with ARB or with CCB treatment further reduced blood pressure and partially reversed renal tissues injury. Furthermore, dietary salt reduction with the combination of ARB plus CCB elicited a strong recovery from HS-induced renal tissue injury including the attenuation of inflammation and oxidative stress. These data support the hypothesis that dietary salt reduction with combination therapy of an ARB plus CCB restores glomerular and tubulointerstitial injury in DSS rats.  相似文献   

2.
In the present investigation we sought to determine if a perinatal high-salt treatment affects blood pressure at an early age (30 days), and if so, to determine the mechanisms responsible for the hypertension. Pregnant dams were given an 8% NaCl diet [high-salt (HS) rats] during the final one-third of gestation and throughout the suckling period. After weaning, the pups continued to receive the high-salt diet until testing at age 30 days. Control groups received a normal-salt diet (NS rats). In HS rats, mean arterial pressure (MAP) was significantly increased (110 +/- 5 vs. 96 +/- 3 mmHg) compared with NS rats. Blockade of brain AT(1) receptors with intracerebroventricular losartan decreased MAP in HS but not NS rats. Blockade of alpha-adrenergic receptors with intravenous phentolamine or ganglionic transmission with intravenous chlorisondamine produced a greater decrease in MAP in HS rats. Baroreflex control of heart rate was assessed using a four-parameter logistics function. The mid-range MAP (p3) was significantly increased in the HS rats. No other baroreflex parameters were affected. Specific binding of (125)I-[Sa (1),Ile(8)]ANG II to AT(1) receptors was increased in the subfornical organ (SFO) of the HS rats. Expression of AT(1a) receptor mRNA was greater in both SFO and PVN of the HS rats. These data suggest that even at an early age, Sprague-Dawley rats treated with a perinatal high-salt diet are hypertensive. The elevated blood pressure appears to be caused by increased sympathetic nervous activity, resulting, in part, from increased brain AT(1) receptor activation.  相似文献   

3.
Several animal models have been developed to study fetal programming of hypertension. One model involves feeding high-salt (HS) diet to rats before and during pregnancy, during lactation, and after weaning for 10 days. In the present investigation, we limited HS diet to the prenatal period in an attempt to find a narrower critical window for fetal programming. The HS diet did not result in low-birth weight offspring. In the adult offspring, radiotelemetry was used to assess blood pressure and heart rate in the conscious unstressed state. As adults, the HS offspring were not hypertensive compared with normal-salt (NS) control animals. However, the pressor and tachycardic responses to 1-h of restraint were significantly enhanced in HS female offspring, and recovery after restraint was delayed. This was accompanied by an increase in relative expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus during basal and stressed conditions. There was no augmented stress response or relative increase in CRH mRNA in adult HS male offspring. When challenged with 1 wk of 8% NaCl diet as adults, neither HS male nor female offspring exhibited salt sensitivity compared with NS groups. These data show that a high-salt diet limited to the prenatal period is not sufficient to program hypertension in adult offspring. However, this narrower critical period is sufficient to imprint a lasting hyperresponsiveness to stress, at least in adult female offspring. These data indicate that excessive maternal salt intake during pregnancy can adversely affect the cardiovascular health of adult offspring.  相似文献   

4.
Dietary potassium is an important modulator of systemic blood pressure (BP). The purpose of this study was to determine whether dietary potassium is associated with an altered abundance of major renal sodium transporters that may contribute to the modulation of systemic BP. A unilateral nephrectomy (uNx) was performed in male Sprague-Dawley rats, and the rats were fed a normal-salt diet (0.3% NaCl) for 4 wk. Thereafter, the rats were fed a high-salt (HS) diet (3% NaCl) for the entire experimental period. The potassium-repleted (HS+KCl) group was given a mixed solution of 1% KCl as a substitute for drinking water. We examined the changes in the abundance of major renal sodium transporters and the expression of mRNA of With-No-Lysine (WNK) kinases sequentially at 1 and 3 wk. The systolic BP of the HS+KCl group was decreased compared with the HS group (140.3 ± 2.97 vs. 150.9 ± 4.04 mmHg at 1 wk; 180.3 ± 1.76 vs. 207.7 ± 6.21 mmHg at 3 wk). The protein abundances of type 3 Na(+)/H(+) exchanger (NHE3) and Na(+)-Cl(-) cotransporter (NCC) in the HS+KCl group were significantly decreased (53 and 45% of the HS group at 1 wk, respectively; 19 and 8% of HS group at 3 wk). WNK4 mRNA expression was significantly increased in the HS+KCl group (1.4-fold of control at 1 wk and 1.9-fold of control at 3 wk). The downregulation of NHE3 and NCC may contribute to the BP-attenuating effect of dietary potassium associated with increased urinary sodium excretion.  相似文献   

5.
To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 +/- 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 +/- 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 +/- 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by approximately 50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.  相似文献   

6.
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.  相似文献   

7.
The coupling of tissue blood flow to cellular metabolic demand involves oxygen-dependent adjustments in arteriolar tone, and arteriolar responses to oxygen can be mediated, in part, by changes in local production of 20-HETE. In this study, we examined the long-term effect of dietary salt on arteriolar oxygen responsiveness in the exteriorized, superfused rat spinotrapezius muscle and the role of 20-HETE in this responsiveness. Rats were fed either a normal-salt (NS, 0.45%) or high-salt (HS, 4%) diet for 4-5 wk. There was no difference in steady-state tissue Po(2) between NS and HS rats, and elevation of superfusate oxygen content from 0% to 10% caused tissue Po(2) to increase by the same amount in both groups. However, the resulting reductions in arteriolar diameter and blood flow were less in HS rats than NS rats. Inhibition of 20-HETE formation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA) attenuated oxygen-induced constriction in NS rats but not HS rats. Exogenous 20-HETE elicited arteriolar constriction that was greatly reduced by the large-conductance Ca(2+)-activated potassium (K(Ca)) channel inhibitors tetraethylammonium chloride (TEA) and iberiotoxin (IbTx) in NS rats and a smaller constriction that was less sensitive to TEA or IbTx in HS rats. Arteriolar responses to exogenous angiotensin II were similar in both groups but more sensitive to inhibition with DDMS in NS rats. Norepinephrine-induced arteriolar constriction was similar and insensitive to DDMS in both groups. We conclude that 20-HETE contributes to oxygen-induced constriction of skeletal muscle arterioles via inhibition of K(Ca) channels and that a high-salt diet impairs arteriolar responses to increased oxygen availability due to a reduction in vascular smooth muscle responsiveness to 20-HETE.  相似文献   

8.
Reversal by the mineralocorticoid receptor antagonist spironolactone on cardiac and renal abnormalities, associated with long-term (since weaning) administration of a high (2 and 8% NaCl chow, HS2 and HS8) sodium diet, was assessed in Sprague-Dawley rats. At the age of 5 mo, spironolactone (20 or 100 mg/kg, gavage) or placebo were given for 14 days to HS2 and HS8 rats. A group fed a regular diet (0.8% NaCl, NS) remained untreated. High sodium intake had no detectable effect on blood pressure; however, cardiac mass index and cross-sectional area of the carotid artery, as well as albuminuria, were increased only in the HS8 group compared with the control group on NS diet. In addition, a marked reduction in glomerular filtration rate (by 40%), associated with a nonproportional fall in renal plasma flow (thus resulting in a decrease in filtration fraction), was observed only in the HS8 group. No change in cardiac and renal fibrosis was detected. Production of the reactive oxygen species (ROS) by aortic tissue was increased in HS8 rats, whereas ROS production by the heart was unaffected. Only the high dose of spironolactone was effective, as it markedly reversed the cardiac hypertrophy and renal hypofiltration associated with the HS8 feeding. The changes were observed in the absence of any effect on systemic blood pressure and production of ROS. These observations favor aldosterone's role in the deleterious effects of marked and prolonged increases in sodium intake.  相似文献   

9.
The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ET(A)/ET(B) receptor blockade was achieved with bosentan (100 mg.kg(-1).day(-1)). All male and female HanSD as well as heterozygous TGR on NS exhibited 100 % survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46 % and 80 %, respectively, and were significantly improved by administration of bosentan to 76 % and 97 %, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading.  相似文献   

10.
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.  相似文献   

11.
Daily consumption of garlic is known to lower the risk of hypertension and ischemic heart disease. In this study, we examined whether aged garlic extract (AGE) prevents hypertension and the progression of compensated left ventricular (LV) hypertrophy in Dahl salt-sensitive (DS) rats. DS rats were randomly divided into three groups: those fed an 8% NaCl diet until 18 weeks of age (8% NaCl group), those additionally treated with AGE (8% NaCl + AGE group), and control rats maintained on a diet containing 0.3% NaCl until 18 weeks of age (0.3% NaCl group). AGE was administered orally by gastric gavage once a day until 18 weeks of age. LV mass was significantly higher in the 8% NaCl + AGE group than in the 0.3% NaCl group at 18 weeks of age, but significantly lower in the 8% NaCl + AGE group than in the 8% NaCl group. No significant differences were observed in systolic blood pressure (SBP) between the 8% NaCl and 8% NaCl + AGE groups at 12 and 18 weeks of age. LV end-diastolic pressure and pressure half-time at 12 and 18 weeks of age were significantly lower in the 8% NaCl + AGE group compared with the 8% NaCl group. AGE significantly reduced LV interstitial fibrosis at 12 and 18 weeks of age. Chronic AGE intake attenuated LV diastolic dysfunction and fibrosis without significantly decreasing SBP in hypertensive DS rats.  相似文献   

12.
This in vitro study evaluated the basal 42K turnover and response to norepinephrine (NE) in the thoracic aorta removed from Dahl salt-sensitive (S) and salt-resistant (R) rats. Five-week-old S and R rats were placed on either a high-salt (HS) or low-salt (LS) diet. After 5 weeks of the diet, systolic blood pressure, aortic weight/length ratio, and the cellular pool of K+ were elevated in the S-HS group only. In contrast, the steady state turnover of 42K, the NE ED50, and the response to a supramaximal dose of NE were the same in both groups of salt-sensitive and salt-resistant rats. These results suggest that, despite the presence of a greatly elevated systolic blood pressure and evidence of aortic hypertrophy, the intrinsic electrolyte metabolism of the vascular smooth muscle in the Dahl hypertensive rat is the same as that of the Dahl normotensive rat.  相似文献   

13.
Recent work from our laboratory indicates that epithelial Na(+) channel (ENaC) function plays an important role in modulating myogenic vascular reactivity. Increases in dietary sodium are known to affect vascular reactivity. Although previous studies have demonstrated that dietary salt intake regulates ENaC expression and activity in epithelial tissue, the importance of dietary salt on ENaC expression in vascular smooth muscle cells (VSMCs) and its role in myogenic constriction is unknown. Therefore, the goal of the present study was to determine whether dietary salt modulates ENaC expression and function in myogenic vasoconstriction. To accomplish this goal, we examined ENaC expression in freshly dispersed VSMCs and pressure-induced vasoconstrictor responses in isolated mesenteric resistance arteries from normotensive Sprague-Dawley rats fed a normal-salt (NS; 0.4% NaCl) or high-salt (HS; 8% NaCl for 2 wk) diet. VSMCs from the mesenteric arteries of NS-fed animals express alpha-, beta-, and gamma-ENaC. The HS diet reduced whole cell alpha- and gamma-ENaC and induced a pronounced translocation of beta-ENaC from intracellular regions toward the VSMC membrane (approximately 336 nm). Associated with this change in expression was a change in the importance of ENaC in pressure-induced constriction. Pressure-induced constriction in NS-fed animals was insensitive to ENaC inhibition with 1 microM benzamil, suggesting that ENaC proteins do not contribute to myogenic constriction in mesenteric arteries under NS intake. In contrast, ENaC inhibition blocked pressure-induced constriction in HS-fed animals. These data suggest that dietary sodium regulates ENaC expression and the quantitative importance of the vascular ENaC signaling pathway contributing to myogenic constriction.  相似文献   

14.
High salt intake (HS) is a risk factor for cardiovascular and kidney disease. Indeed, HS may promote blood-pressure-independent tissue injury via inflammatory factors. The lipid-lowering 3-hydroxy 3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors exert beneficial lipid-independent effects, reducing the expression and synthesis of inflammatory factors. We hypothesized that HS impairs kidney structure and function in the absence of hypertension, and these changes are reversed by atorvastatin. Four groups of rats were treated for 6 wk in metabolic cages with their diets: normal salt (NS); HS, NS plus atorvastatin and HS plus atorvastatin. We measured basal and final body weight, urinary sodium and protein excretion (U(Prot)V), and systolic blood pressure (SBP). At the end of the experimental period, cholesterolemia, creatinine clearance, renal vascular reactivity, glomerular volume, cortical and glomerular endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 expression were measured. We found no differences in SBP, body weight, and cholesterolemia. HS rats had increased creatinine clearence, U(Prot)V, and glomerular volume at the end of the study. Acetylcholine-induced vasodilatation decreased by 40.4% in HS rats (P < 0.05). HS decreased cortical and glomerular eNOS and caused mild glomerular sclerosis, interstitial mononuclear cell infiltration, and increased cortical expression of TGF-β1. All of these salt-induced changes were reversed by atorvastatin. We conclude that long-term HS induces inflammatory and hemodynamic changes in the kidney that are independent of SBP. Atorvastatin corrected all, suggesting that the nitric oxide-oxidative stress balance plays a significant role in the earlier stages of salt induced kidney damage.  相似文献   

15.
Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the detailed mechanism of reactive oxygen species (ROS) regulation is still unclear. This study examined the effect of high-salt diet on ROS production and expression of antioxidant enzymes in control and experimentally diabetic rats. Wistar fatty rats (WFR) as a type 2 diabetes mellitus model and Wistar lean rats (WLR) as a control were fed a normal-salt diet (NS) and high-salt diet (HS) from the age of 6 to 14 weeks. We then examined the blood pressure, urinary albumin excretion (UAE), and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. The expression of antioxidant enzymes including α-catalase (CAT), Cu-Zn superoxide dismutase (SOD), Mn SOD, and glutathione peroxidase (GPx) were analyzed in the glomeruli of the rats using Western blotting. The expression of NAD(P)H oxidase p47phox and NFκB p65 was evaluated using immunohistochemical staining. By 14 weeks of age, the WFR-HS group exhibited hypertension and markedly increased UAE. The level of 8-OHdG, a marker of oxidative damage, in the WFR-HS group was also higher than that in the WLR groups or WFR-NS group. The expression of α-CAT and Mn SOD proteins was significantly decreased in isolated glomeruli in the WFR-HS group. GPx and Cu-Zn SOD expression did not differ between the WFR and WLR groups. High expression of ROS and decreases in antioxidants were seen in the glomeruli of diabetic rats with hypertension, suggesting that oxidative stress may be involved in the development of DN.  相似文献   

16.
Vasodilator responses were assessed in resistance arteries (100-200 microm) isolated from the gracilis muscle of normotensive rats after changes in dietary salt intake. Sprague-Dawley rats were maintained on either a high-salt (HS) diet (4.0% NaCl) or a low-salt (LS) diet (0.4% NaCl) for 4-8 wk (chronic) or 3 days (short-term) with water ad libitum. One group of short-term HS rats received a continuous intravenous infusion of a low dose (5 ng x kg(-1) x min(-1)) of ANG II to prevent the ANG II suppression that occurs with HS diet. Short-term and chronic HS diet eliminated arterial dilation in response to ACh and reduced PO(2) (30-40 mmHg) and the stable prostacyclin analog iloprost. ANG II infusion preserved the response to these vasodilator stimuli in short-term HS animals. Dilator responses to sodium nitroprusside and forskolin were unaffected by HS diet. These findings suggest that ANG II suppression during HS diet impairs vascular relaxation mechanisms upstream from the cAMP and cGMP second messenger systems.  相似文献   

17.
High-salt diets decrease insulin sensitivity in salt-sensitive hypertensive rats, and glucocorticoids promote adipocyte growth and may have pathophysiological roles in the metabolic syndrome. The aim of this study was to clarify the relationship between high-salt diet and the adipocyte glucocorticoid hormones in salt-sensitive hypertensive rats. Six-week-old Dahl salt-sensitive (DS) hypertensive rats and salt-resistant (DR) rats were fed a high-salt diet or a normal-salt diet for 4 weeks. Fasting blood glucose (FBG), serum adiponectin, plasma insulin, and corticosterone in plasma and in visceral adipose tissues, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activities in adipose tissues and glucose uptake in isolated muscle were measured. Animals underwent an oral glucose tolerance test (OGTT). The expression of mRNA for glucocorticoid receptor (GR), 11β-HSD1 and tumor necrosis factor-α (TNF-α) in adipose tissues were measured using a real-time PCR. A high-salt diet did not influence FBG; however, decreased 2-deoxy glucose uptake and plasma insulin during OGTT in DS rats. The high-salt diet increased significantly adipose tissue corticosterone concentration and 11β-HSD1 activities, gene expression for GR, 11β-HSD1 and TNF-α in adipose tissues in DS rats compared with DR rats (p < 0.05). The high-salt diet did not influence plasma corticosterone and serum adiponectin concentration in DS and DR rats. These results suggest that changes in GR and 11β-HSD1 in adipose tissue may contribute to insulin sensitivity in salt-sensitive hypertensive rats.  相似文献   

18.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 microM) and histamine (10 microM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 microM)-induced increases in [Ca2+]i were unaffected. Methacholine-induced nitric oxide (NO) production was eliminated in endothelial cells of aortas from rats fed a HS diet. Low-dose ANG II infusion (5 ng x kg(-1) x min(-1) iv) for 3 days prevented impaired [Ca2+]i signaling response to methacholine and histamine and restored methacholine-induced NO production in aortas from rats on a HS diet. Adding Tempol (500 microM) to the tissue bath to scavenge superoxide anions increased NO release and caused N(omega)-nitro-L-arginine methyl ester-sensitive vascular relaxation in aortas from rats fed a HS diet but had no effect on methacholine-induced Ca2+ responses. Chronic treatment with Tempol (1 mM) in the drinking water restored NO release, augmented vessel relaxation, and increased methacholine-induced Ca2+ responses significantly in aortas from rats on a HS diet but not in aortas from rats on a LS diet. These findings suggest that 1) agonist-induced Ca2+ responses and NO levels are reduced in aortas of rats on a HS diet; 2) increased vascular superoxide levels contribute to NO destruction, and, eventually, to impaired Ca2+ signaling in the vascular endothelial cells; and 3) reduced circulating ANG II levels during elevated dietary salt lead to elevated superoxide levels, impaired endothelial Ca2+ signaling, and reduced NO production in the endothelium.  相似文献   

19.

Introduction

The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure.

Methods

Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age.

Results

Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e′)] independent of prevailing salt, and improved the e′/a′ ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler.

Conclusion

Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.  相似文献   

20.
Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号