首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540 mol C L–1). The highly colored nature of the DOC in these lakes suggests it is mostly of terrestrial origin. Hypolimnetic methane accumulation was positively correlated with epilimnetic DOC concentration (Spearman rank correlation = 0.67; p < 0.01), an indicator of allochthonous DOC inputs, but not with photic zone chlorophyll a concentration (Spearman rank correlation = 0.30; p = 0.22). Hypolimnetic DOC concentrations declined in 19 of 21 lakes during the stratified period at rates that ranged from 0.06 to 53.9 mmol m–2 d–1. The hypolimnetic accumulation of DIC + CH4 was positively correlated with, and, in most cases of comparable magnitude to, this DOC decline suggesting that DOC was an important substrate for hypolimnetic metabolism. The percentage of surface irradiance reaching the thermocline was lower in high DOC lakes (0.3%) than in low DOC lakes (6%), reducing hypolimnetic photosynthesis (as measured by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with < 400 mol L–1 DOC had high concentrations of dissolved oxygen and no CH4, while the hypolimnia of lakes with DOC > 800 mol L–1 were completely anoxic and often had high CH4 concentrations. Thus, DOC affects hypolimnetic metabolism via multiple pathways: DOC was significant in supporting hypolimnetic metabolism; and at high concentrations depressed photosynthesis (and therefore oxygen production and DIC consumption) in the hypolimnion.  相似文献   

2.
Here, we explore the interaction between hydrology and the reactivity of allochthonous dissolved organic carbon (DOCalloch) in determining the potential of DOCalloch to generate CO2 through biological and photo-chemical mineralization in boreal lakes. We developed a mechanistic model that integrates the reactivity continuum (RC) concept to reconstruct in-lake mineralization of DOCalloch under variable hydrologic conditions using empirical measurements of DOCalloch concentrations and reactivity as model inputs. The model predicts lake DOCalloch concentration (L-DOCalloch) and its average overall reactivity \( \left( {\bar{K}_{\text{alloch}} } \right) \), which integrates the distribution of DOCalloch ages within the lake as a function of the DOC loading (DOCin), the initial reactivity of this DOCin (k 0), and the lake water residence time (WRT). The modeled DOCalloch mineralization rates and concentrations were in agreement with expectations based on observed and published values of ambient lake DOC concentrations and reactivity. Results from this modeling exercise reveal that the interaction between WRT and k 0 is a key determinant of the ambient concentration and reactivity of lake DOCalloch, which represents the bulk of DOC in most of these lakes. The steady-state \( \left( {\bar{K}_{\text{alloch}} } \right) \) also represents the proportion of CO2 that can be extracted from DOCalloch during its transit through lakes, and partly explains the patterns in surface water pCO2 oversaturation that have been observed across gradients of lake size and volume. We estimate that in-lake DOCalloch mineralization could potentially contribute on average 30–40% of the observed surface carbon dioxide partial pressure (pCO2) across northern lakes. Applying the RC framework to in-lake DOCalloch dynamics improves our understanding of DOCalloch transformation and fate along the aquatic network, and results in a predictable mosaic of DOC reactivity and potential CO2 emissions across lakes within a landscape.  相似文献   

3.
Concentrations of dissolved organic carbon (DOC) and color were measuredas a function of time in enclosures and lakes at the Experimental Lakes Area,to calculate their net loss rates. Loss rates in enclosures werefirst order for both DOC and color, with half-times for loss of 166and 122 d, respectively. Thus, the colored, light-attenuating componentof the DOC pool is lost from water more rapidly than is bulk DOC. Loss ratesin lakes, calculated from a steady state model, were similar to values forcolor in enclosures, but for DOC in lakes were four times slower than inenclosures. In lakes, loss rate for DOC increased rapidly with decreasingwater residence time (w) but was independent ofw when it was greater than 3 years. In lakes, theloss rate for color was independent of water residence time. Thedifference in losses of DOC and color between lakes and enclosurescould be from release of low-color DOC from sediments.  相似文献   

4.
The distributions of dissolved organic carbon (DOC) in the warm season were elucidated in ten lakes of different trophic types in Japan, Russia, and China. DOC showed similar vertical distributions in all the lakes in summer when thermal stratification occurred. DOC in the epilimnion was higher than the value of 0.8mgCl–1 found in the hypolimnion. In three Japanese lakes, hypolimnion DOC was negatively correlated with apparent oxygen utilization (AOU), reflecting the net oxidation of DOC using the dissolved oxygen in lake water. The DOC:O2 ratios (0.115–0.179), calculated by the slopes of the regression lines of DOC versus AOU in hypolimnion water, were as low as those of deep-sea water, which indicates low bioavailability of lake water DOC for heterotrophic bacteria. DOC and conductivity did not correlate well except in two Japanese lakes: one showed a positive correlation and the other a negative correlation, indicating DOC loading from the inflowing rivers. Eutrophic lakes tended to have higher DOC values than meso- and oligotrophic lakes, and DOC values in the surface water negatively correlated with Secchi depths.  相似文献   

5.
We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.  相似文献   

6.
1. Dissolved organic carbon (DOC) concentration was determined for a range of lakes of varying conductivity (30–4000 μS cm−1) in the low Arctic of SW Greenland. DOC concentration range from <1 to >100 mg C L−1, occasionally approaching 200 mg C L−1 in meromictic, oligosaline lakes. DOC concentration was strongly related to [log10] conductivity and total nitrogen. 2. Peak DOC concentrations (>80 mg L−1) occur in lakes located approximately 50 km from the present ice sheet margin, a zone of low effective precipitation; evaporative concentration is the first‐order control on DOC concentration. Lakes at the coast and closer to the ice margin had lower DOC concentrations (<20 mg C L−1). Local factors, notably the presence or absence of an outflow and catchment morphometry, resulted in considerable variability in concentration (20–100 mg C L−1) within the area of maximum concentration around 51°W. 3. Despite their high DOC concentration, these lakes are essentially colourless. Dissolved organic matter (DOM) absorption (a375) was low in most lakes (<10 m−1) with maximum values (approximately 20 m−1) occurring in one humic‐stained lake in the area. Absorption values corrected for DOC concentration () were very low (<0.6 m2 g−1 C) for all lakes apart from those at the coast, perhaps reflecting greater allochthonous inputs at these sites. 4. S, the spectral slope coefficient, ranged from 16 to 27 μm−1 and was weakly correlated with DOC concentration. Both a375 and S showed similar distribution patterns along the sampling gradient as did DOC, with maximum values at approximately 51°W. High and low S may indicate fresher, more rapidly flushed, systems with less degraded DOM or greater inputs from their catchments. 5. The lakes closer to the head of the fjord with higher conductivity, had low (<0.2 m2 g−1 C) and high S (>21 μm−1) and this may reflect increasingly longer lake water residence times, greater DOM age and photochemical degradation.  相似文献   

7.
Four whole-lake inorganic 13C addition experiments were conducted in lakes of differing trophic status. Inorganic 13C addition enriched algal carbon in 13C and changed the C-DOC by +1.5‰ to +9.5‰, depending on the specific lake. This change in C-DOC represented a significant input of algal DOC that was not completely consumed by bacteria. We modeled the dynamics in C-DOC to estimate the fluxes of algal and terrestrial carbon to and from the DOC pool, and determine the composition of the standing stock. Two experiments in lightly stained, oligotrophic lakes indicated that algal production was the source of about 20% of the DOC pool. In the following year, the experiment was repeated in one of these lakes under conditions of nutrient enrichment, and in a third, more humic lake. Algal contributions to the DOC pool were 40% in the nutrient enriched lake and 5% in the more humic lake. Spectroscopic and elemental analyses corroborated the presence of increased algal DOC in the nutrient enriched lake. Natural abundance measurements of the C of DOC in 32 lakes also revealed the dual contributions of both terrestrial and algal carbon to DOC. From these results, we suggest an approach for inferring the contribution of algal and terrestrial DOC using easily measurable parameters.  相似文献   

8.
9.
Trends in Dissolved Organic Carbon in UK Rivers and Lakes   总被引:11,自引:6,他引:5  
Several studies have highlighted an increase in DOC concentration in streams and lakes of UK upland catchments though the causal mechanisms controlling the increase have yet to be fully explained. This study, compiles a comprehensive data set of DOC concentration records for UK catchments to evaluate trends and test whether observed increases are ubiquitous over time and space. The study analysed monthly DOC time series from 198 sites, including 29 lakes, 8 water supply reservoirs and 161 rivers. The records vary in length from 8 to 42 years going back as far as 1961. Of the 198 sites, 153 (77%) show an upward trend in DOC concentration significant at the 95% level, the remaining 45 (23%) show no significant trend and no sites show a significant decrease in DOC concentration. The average annual increase in DOC concentration was 0.17 mg C/l/year. The dataset shows: (i) a spatial consistent upward trend in the DOC concentration independent of regional effects of rainfall, acid and nitrogen deposition, and local effects of land-use change; (ii) a temporally consistent increase in DOC concentration for period back as far as the 1960s; (iii) the increase in DOC concentration means an estimated DOC flux from the UK as 0.86 Mt C for the year 2002 and is increasing at 0.02 Mt C/year. Possible reasons for the increasing DOC concentration are discussed.  相似文献   

10.
The Adirondack region of New York is characterized by soils and surface waters that are sensitive to inputs of strong acids, receiving among the highest rates of atmospheric nitrogen (N) deposition in the United States. Atmospheric N deposition to Adirondack ecosystems may contribute to the acidification of soils through losses of exchangeable basic cations and the acidification of surface waters in part due to increased mobility of nitrate (NO3). This response is particularly evident in watersheds that exhibit nitrogen saturation. To evaluate the contribution of atmospheric N deposition to the N export and the capacity of lake-containing watersheds to remove, store, or release N, annual N input–output budgets were estimated for 52 lake-containing watersheds in the Adirondack region from 1998 to 2000. Wet N deposition was used as the N input and the lake N discharge loss was used as the N output based on modeled hydrology and measured monthly solute concentrations. Annual outputs were also estimated for dissolved organic carbon (DOC). Wet N deposition increased from the northeast to the southwest across the region. Lake N drainage losses, which exhibited a wider range of values than wet N deposition, did not show any distinctive spatial pattern, although there was some evidence of a relationship between wet N deposition and the lake N drainage loss. Wet N deposition was also related to the fraction of N removed or retained within the watersheds (i.e., the fraction of net N hydrologic flux relative to wet N deposition, calculated as [(wet N deposition minus lake N drainage loss)/wet N deposition]). In addition to wet N deposition, watershed attributes also had effects on the exports of NO3, ammonium (NH4+), dissolved organic nitrogen (DON), and DOC, the DOC/DON export ratio, and the N flux removed or retained within the watersheds (i.e., net N hydrologic flux, calculated as [wet N deposition less lake N drainage loss]). Elevation was strongly related with the lake drainage losses of NO3, NH4+, and DON, net NO3 hydrologic flux (i.e., NO3 deposition less NO3 drainage loss), and the fraction of net NO3 hydrologic flux, but not with the DOC drainage loss. Both DON and DOC drainage losses from the lakes increased with the proportion of watershed area occupied by wetlands, with a stronger relationship for DOC. The effects of wetlands and forest type on NO3 flux were evident for the estimated NO3 fluxes flowing from the watershed drainage area into the lakes, but were masked in the drainage losses flowing out of the lakes. The DOC/DON export ratios from the lake-containing watersheds were in general lower than those from forest floor leachates or streams in New England and were intermediate between the values of autochthonous and allochthonous dissolved organic matter (DOM) reported for various lakes. The DOC/DON ratios for seepage lakes were lower than those for drainage lakes. In-lake processes regulating N exports may include denitrification, planktonic depletion, degradation of DOM, and the contribution of autochthonous DOM and the influences of in-lake processes were also reflected in the relationships with hydraulic retention time. The N fluxes removed or stored within the lakes substantially varied among the lakes. Our analysis demonstrates that for these northern temperate lake-containing watershed ecosystems, many factors, including atmospheric N deposition, landscape features, hydrologic flowpaths, and retention in ponded waters, regulated the spatial patterns of net N hydrologic flux within the lake-containing watersheds and the loss of N solutes through drainage waters.  相似文献   

11.
Softwater lakes provide a habitat for isoetid macrophytes, which are vulnerable to eutrophication and acidification. In Ireland many catchments of such lakes are currently planted with exotic conifers. Management of these plantations can lead to increases in lake water phosphorus (P), threatening the survival of softwater macrophytes. Regional increases of dissolved organic carbon (DOC) may also have a detrimental effect on aquatic plants. The persistence of the macrophyte flora in lakes with managed forested catchments in Northern Ireland was investigated by comparing the macrophyte community of 12 lakes surveyed in 2007 with a 1988-1990 survey. Contemporary data were compared with plant macrofossil records pre-dating 1900. Macrophyte abundance generally remained unchanged but Littorella uniflora (L.) Asch. and Fontinalis antipyretica Hedw. showed a significant decline since 1988-1990. Water colour, alkalinity, silica, total P, total soluble P and soluble reactive P increased; conductivity and chlorophyll a decreased in the lakes over time. These changes coincided with increased pH in precipitation and potentially elevated exports of DOC to water. Conifer plantation management appeared to have less impact on the macrophyte flora than expected from the elevated lake P concentrations. It appears that a large regional increase in DOC is also a threat to macrophyte abundance and diversity in these upland catchments and conservation efforts may be more successful in lakes with longer water residence times.  相似文献   

12.
The effects of acidification on metal budgets of lakes and catchments   总被引:2,自引:0,他引:2  
Metal (Cu, Ni, Zn, Fe, Mn and Al) budgets were measured for 5 lakes and their catchments near Sudbury, Ontario, an area severely affected by the emission and deposition of strong acids (H2SO4/SO2) and metals. Three of the lakes were circum-neutral (pH 6.3–7.1) during the study period, while one lake had a pH of 4.8 and a fifth had very low pH ( 4.4).The lakes' catchments were all sources of Al, Mn and Ni, but were sinks for Cu and Zn. The Fe results were inconsistent; two lakes' catchments were sources while three were sinks.The acidic lakes were conservative (i.e. net retention of zero) with respect to Cu and Ni, while the circum-neutral lakes were effective sinks for these 2 metals. All of the lakes were sinks for Zn and Al, but the acidic lakes were less effective. All lakes were also Fe sinks. While there was no pattern relative to the lakes' pH's, there was a trend towards increasing Fe retention with increasing water replenishment time. The most acidic lake was actually a source of Mn, while the others were sinks.  相似文献   

13.
Short term changes in acid loading and dissolved organic carbon (DOC) content were studied in relation to water column bacteria of ten acid lakes on the Katharine Ordway Preserve, Florida. Five clear oligotrophic lakes and five dark dystrophic lakes were sampled during and after a drought period in July and September, 1985. Water column bacterial densities, light extinction, chlorophyll a, DOC, pH, dissolved oxygen, nutrients, and other chemical variables were measured. Significant positive correlations existed among DOC, chlorophyll a, pH, and water column bacterial densities during the drought period.There were no significant changes in water column bacterial densities or pH of clear lakes in the post-drought period, despite a 4.6 fold increase in acid loading from rainfall. A 3 fold increase of DOC, a decline in pH, and decreased bacterial densities in dark lakes suggested inhibition of bacteria by DOC and pH. A decrease in the relationship of DOC to bacterial numbers in all lakes was also noted. The correlations among DOC, chlorophyll a, and pH were no longer significant.Using data from both time periods significant polynomial regressions were observed between DOC and bacterial density and DOC and chlorophyll a. Maximum bacterial numbers occurred at 20 mg C 1–1 of DOC. Above this bacterial numbers decreased also suggesting an inhibitory effect of DOC. Because pH was lower after DOC had increased in the dark lakes, the increase in acid conditions may have enhanced this inhibitory effect. The short term effects of DOC on the dark-lake bacteria greatly exceeded the influence of acid loading on clear-lake bacteria.  相似文献   

14.
While extensive knowledge exists on the relationship between nutrient loading and nutrient concentrations in lakes in the cold temperate region, few studies have been conducted in warm lakes, not least in warm arid lakes. This is unfortunate as a larger proportion of the world’s lakes will be situated in arid climates in the future due to climate change and a larger proportion will suffer from a higher frequency of intensive drought. We conducted a comprehensive 11–13 year mass balance study in two interconnected shallow Mediterranean lakes in Turkey, covering a period with substantial changes in climate conditions. The upstream lake was only affected by natural changes in nutrient loading, while the downstream lake was additionally influenced by sewage diversion and restoration by fish removal. Contrasting to experience from north temperate lakes we found an increase in in-lake concentrations of total phosphorus and inorganic nitrogen (ammonia as well as nitrate) in dry years despite lower external nutrient loading, and submerged macrophytes did not increase the nitrogen retention capacity of the lakes. In contrast, fish removal modulated the nitrogen concentration as in north temperate lakes, but the effect was not long-lasting. Our results suggest that climate warming reduces the nutrient retention capacity of shallow lakes in the Mediterranean and exacerbates eutrophication. Lower thresholds of nutrient loading for shifting turbid shallow lakes to a clear water state are therefore to be expected in arid zones in a future warmer climate, with important management implications.  相似文献   

15.
We examined changes in bacterioplankton standing stock and production in subarctic lakes in the north of Sweden to elucidate their coupling to lake physical, chemical, and biological characteristics. Sixteen lakes situated along an altitude gradient extending from the coniferous forest to the high-alpine belt were studied during 1998 and 1999. The summer mean bacterial numbers and production varied substantially between the lakes, with a general trend toward decreasing values with increasing altitude. The results demonstrate that P probably restricted bacterial utilization of DOC in the coniferous forest lakes, while low DOC concentrations limited bacterial growth during the summer in the alpine lakes. The primary production of plankton was insufficient to support bacterial production in the lakes. High input of allochthonous DOC to the alpine lakes in spring was sufficient both to increase the bacterial production and to induce P-limitation. As a consequence, there was a tendency toward higher bacterial activity in the spring compared to the summer in the alpine lakes. The results indicate that most of the bacterial standing stock and production are supported by allochthonous DOC plus DOC from benthic production, and more or less limited by the phosphorus supply. We therefore suggest that bacteria populations in subarctic lakes may be indirectly affected by climate variations through its impact on the input of DOC and nutrients from the lake catchments.  相似文献   

16.
Pollution from microplastics and anthropogenic fibres threatens lakes, but we know little about what factors predict its accumulation. Lakes may be especially contaminated because of long water retention times and proximity to pollution sources. Here, we surveyed anthropogenic microparticles, i.e., microplastics and anthropogenic fibres, in surface waters of 67 European lakes spanning 30° of latitude and large environmental gradients. By collating data from >2,100 published net tows, we found that microparticle concentrations in our field survey were higher than previously reported in lakes and comparable to rivers and oceans. We then related microparticle concentrations in our field survey to surrounding land use, water chemistry, and plastic emissions to sites estimated from local hydrology, population density, and waste production. Microparticle concentrations in European lakes quadrupled as both estimated mismanaged waste inputs and wastewater treatment loads increased in catchments. Concentrations decreased by 2 and 5 times over the range of surrounding forest cover and potential in-lake biodegradation, respectively. As anthropogenic debris continues to pollute the environment, our data will help contextualise future work, and our models can inform control and remediation efforts.

Pollution from microplastics and anthropogenic fibres threatens lakes, but we know little about what factors predict its accumulation. This study uses a survey of 67 European lakes spanning 30° of latitude to show that economic and environmental indicators predict the pollution of lakes by anthropogenic microparticles.  相似文献   

17.
We studied the formation of dissolved silicon loads from rivers to lakes, the development of diatoms in lakes and the role of climatic forcing on the silicon cycle in three river-lake systems in Sweden, Estonia and Northern Germany. We found coherent seasonality in the silicon loads of the two northern rivers, which was probably caused by the common snow-type hydrology of the catchments as distinct from the rain-type hydrology of the catchment, further south. The similarity among lakes in the dynamics of the Si-related variables studied resulted from similarities in mean lake depth and mixing type rather than the climatic regime. Among the variables measured at the three sites, river water discharge responded most coherently to climatic forcing as synchronized by the North Atlantic Oscillation winter index (NAOw). Water discharge and Si load were strongly linked variables and showed coherent patterns among the river systems. We found significant season-specific correlations of the NAOw with either the biomass or the share of diatoms in each lake, but no coherent pattern among the lakes. Our results indicate that processes driven by water discharge are more coherent across regions than in-lake processes.  相似文献   

18.
Thirty-four lakes and ponds on north-central Victoria Island (Arctic Canada) were examined in order to characterize the limnological conditions of these unstudied aquatic ecosystems, and to provide baseline data as part of a larger study monitoring future changes in climatically-sensitive high-latitude locations. Similar to several other arctic regions, the lakes and ponds were slightly alkaline (mean pH = 7.65), dilute (mean specific conductance = 96.4 S), and low in nutrients. What distinguished this limnological data set was the ultra-oligotrophic nature of the lakes and ponds, as mean phosphorus (1.3 g l–1) and chlorophyll a (0.4 g l–1) concentrations were amongst the lowest recorded in arctic environments. Also, dissolved organic carbon (DOC) concentrations (often <1 mg l–1) were 2–3 times lower than those recorded for ponds at similar latitudes. Principal components analysis (PCA) separated sites primarily along a gradient of DOC and specific conductance, and along a secondary gradient of particulate nitrogen, likely reflecting differences in phyto- and zooplankton biomass. These ultra-oligotrophic lakes and ponds should show a marked response to global warming. As DOC acts as a natural UV radiation screen, the combination of ultra-oligotrophic conditions and low DOC levels suggests that the biota within these sites are representative of those adapted to living in highly stressful environments. Lakes and ponds in this region make ideal monitoring sites, as they should be especially responsive to future environmental changes.  相似文献   

19.
Compared to marine research, there have been few attempts to search for general predictive patterns in stable isotope ratios across lakes. Previous work has determined, however, that the 13C values of both littoral epilithon and pelagic zooplankton decrease with increasing concentration of dissolved organic carbon (DOC) in boreal forest lakes. Despite a substantial contribution of allochthonous carbon to fuelling littoral foodwebs in northwestern Ontario, a survey of 12 lakes showed that enough autochthonous carbon must be assimilated by leeches (Macrodella decora, Percymoorensis mannoratis) to demonstrate inverse relationships between leech 13C and lake DOC. Establishing such baseline empirical relationships between limnological variables and organism 13C will enable inter-lake comparisons, and is a maturing direction in freshwater isotope ecology.  相似文献   

20.
Organic acids and inorganic chemistry were examined in seventeen seepage lakes, seven streams, and one seep in central Maine. The objectives of this analysis were to determine the quantity and quality of dissolved organic carbon (DOC), and to assess the relationship between organic and inorganic surface water chemistry. Lakes and streams sampled were dilute (average conductivity of 20.3 μS cm?1) with a wide range of DOC (125–2593 μmol C L?1). Organic acids in DOC were evaluated by:
  • DOC fractionation (hydrophobic acids and neutrals, and hydrophilic acids, bases, and neutrals);
  • DOC isolation followed by FT-IR, base titration, and chemical analyses;
  • adsorption on solid phase extraction columns; and charge balance studies.
  • All lakes and streams were dominated by hydrophobic and hydrophilic acids (60 to 92% of DOC). Lakes and streams with low DOC had low hydrophobic to hydrophilic acid ratios (ca 1.2–1.3), regardless of pH and acid neutralizing capacities (ANC), compared to lakes and streams with moderate to high DOC concentrations (ca 1.9–2.4). Based on FT-IR spectroscopy and chemical analysis, organic acids were found to be dominated by a strong carboxylic character. Titration data of isolated DOC allowed accurate prediction of organic anions, which were strongly pH dependent (organic anions ranged from 14 to 198 μeq L?1). Exchange acidity averaged 11.3, 13.6, and 8.7 μeq mg C?1 for lake hydrophobic acids, lake hydrophilic acids, and stream hydrophobic acids, respectively. Overall evidence suggested that DOC and organic acid characteristics were related to their carboxylic functional group content and that the nature of these constituents was similar despite the source of origin (upland soils, wetlands, or Sphagnum deposits). Also, contact of soil leachates with B horizons seemed to be a controlling factor in DOC quantity and quality in the lakes and streams studied.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号