首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAPK的细胞内定位与激活后移位机制   总被引:6,自引:1,他引:5  
信号蛋白的亚细胞定位和激活后移位已成为细胞信号转导研究中的重要内容.MAPK信号通路是真核细胞中的重要信号转导系统.MAPK在细胞中有着相对固定的定位,在适宜的刺激作用下会移位入核并产生相应的生理效应.目前认为,MAPK的磷酸化状态及与其他蛋白质,如上游激酶、磷酸酶和下游底物之间的相互作用,可能在其特异性定位与激活后移位中起作用.MAPK的定位与移位机制的阐明,有助于进一步揭示MAPK的生理功能.  相似文献   

2.
N-terminal tail phosphorylation of histone H3 plays an important role in gene expression, chromatin remodeling, and chromosome condensation. Phosphorylation of histone H3 at serine 10 was shown to be mediated by RSK2, mitogen- and stress-activated protein kinase-1 (MSK1), and mitogen-activated protein kinases depending on the specific stimulation or stress. Our previous study showed that mitogen-activated protein kinases MAP kinases are involved in ultraviolet B-induced phosphorylation of histone H3 at serine 28 (Zhong, S., Zhong, Z., Jansen, J., Goto, H., Inagaki, M., and Dong, Z., J. Biol. Chem. 276, 12932-12937). However, downstream effectors of MAP kinases remain to be identified. Here, we report that H89, a selective inhibitor of the nucleosomal response, totally inhibits ultraviolet B-induced phosphorylation of histone H3 at serine 28. H89 blocks MSK1 activity but does not inhibit ultraviolet B-induced activation of MAP kinases p70/85(S6K), p90(RSK), Akt, and protein kinase A. Furthermore, MSK1 markedly phosphorylated serine 28 of histone H3 and chromatin in vitro. Transfection experiments showed that an N-terminal mutant MSK1 or a C-terminal mutant MSK1 markedly blocked MSK1 activity. Compared with wild-type MSK1, cells transfected with N-terminal or C-terminal mutant MSK1 strongly blocked ultraviolet B-induced phosphorylation of histone H3 at serine 28 in vivo. These data illustrate that MSK1 mediates ultraviolet B-induced phosphorylation of histone H3 at serine 28.  相似文献   

3.
4.
5.
6.
7.
《The Journal of cell biology》1993,122(5):1079-1088
Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are activated rapidly in cells stimulated with various extracellular signals. This activation is mediated via MAP kinase kinase (p45mapkk), a dual specificity kinase which phosphorylates two key regulatory threonine and tyrosine residues of MAP kinases. We reported previously that the persistent phase of MAP kinase activation is essential for mitogenically stimulated cells to pass the "restriction point" of the cell cycle. Here, using specific polyclonal antibodies and transfection of epitope-tagged recombinant MAP kinases we demonstrate that these signaling protein kinases undergo distinct spatio-temporal localization in growth factor-stimulated cells. In G0-arrested hamster fibroblasts the activator p45mapkk and MAP kinases (p42mapk, p44mapk) are mainly cytoplasmic. Subsequent to mitogenic stimulation by serum or alpha-thrombin both MAP kinase isoforms translocate into the nucleus. This translocation is rapid (seen in 15 min), persistent (at least during the entire G1 period up to 6 h), reversible (by removal of the mitogenic stimulus) and apparently 'coupled' to the mitogenic potential; it does not occur in response to nonmitogenic agents such as alpha-thrombin-receptor synthetic peptides and phorbol esters that fail to activate MAP kinases persistently. When p42mapk and p44mapk are expressed stably at high levels, they are found in the nucleus of resting cells; this nuclear localization is also apparent with kinase-deficient mutants (p44mapk T192A or Y194F). In marked contrast the p45mapkk activator remains cytoplasmic even during prolonged growth factor stimulation and even after high expression levels achieved by transfection. We propose that the rapid and persistent nuclear transfer of p42mapk and p44mapk during the entire G0-G1 period is crucial for the function of these kinases in mediating the growth response.  相似文献   

8.
9.
Mitogen-activated protein kinases (MAPKs) are common signal transducers in all eukaryotic organisms. MAPKs are activated by protein kinase cascades consisting of MAPK kinases (MAP2Ks) and MAPK kinase kinases (MAP3Ks). Extracellular-signal regulated kinases 1 and 2 (ERK1/2) are the best characterized MAPKs. Like other MAPKs their activity is regulated by dual phosphorylation as well as dephosphorylation by a host of phosphoprotein phosphatases. The ability to phosphorylate or thiophosphorylate ERK2 in vitro, as described here, is valuable for use in downstream applications designed to investigate MAPK signaling networks.  相似文献   

10.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

11.
Mitogen activated protein (MAP) kinases are well known serine threonine kinases that modulate gene expression, mitosis, cell proliferation and programmed cell death or 'apoptosis' in response to various stresses. Extracellular stress regulated kinase (ERK), c-jun NH2 terminal kinase and p38 are major members of the MAP kinases, and there is now a body of evidence of their involvement in genesis or sensitivity to chemotherapy of human prostate cancers. In this review, we focus on the molecular roles of MAP kinases and their pathological correlations, with particular attention to novel downstream signals through phosphorylation of the Fas-associated death domain protein that effectively regulates not only apoptosis but also the cell cycle in prostate neoplastic cells.  相似文献   

12.
13.
Mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that play a central role in transducing extracellular cues into a variety of intracellular responses ranging from lineage specification to cell division and adaptation. Fourteen MAP kinase genes have been identified in the human genome, which define 7 distinct MAP kinase signaling pathways. MAP kinases can be classified into conventional or atypical enzymes, based on their ability to get phosphorylated and activated by members of the MAP kinase kinase (MAPKK)/MEK family. Conventional MAP kinases comprise ERK1/ERK2, p38s, JNKs, and ERK5, which are all substrates of MAPKKs. Atypical MAP kinases include ERK3/ERK4, NLK and ERK7. Much less is known about the regulation, substrate specificity and physiological functions of atypical MAP kinases.  相似文献   

14.
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.  相似文献   

15.
16.
17.
Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号