首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hyperglycemia promotes insulin resistance at least in part by increasing the formation of advanced glycation end products (AGEs). We have previously shown that in L6 myotubes human glycated albumin (HGA) induces insulin resistance by activating protein kinase Calpha (PKCalpha). Here we show that HGA-induced PKCalpha activation is mediated by Src. Coprecipitation experiments showed that Src interacts with both the receptor for AGE (RAGE) and PKCalpha in HGA-treated L6 cells. A direct interaction of PKCalpha with Src and insulin receptor substrate-1 (IRS-1) has also been detected. In addition, silencing of IRS-1 expression abolished HGA-induced RAGE-PKCalpha co-precipitation. AGEs were able to induce insulin resistance also in vivo, as insulin tolerance tests revealed a significant impairment of insulin sensitivity in C57/BL6 mice fed a high AGEs diet (HAD). In tibialis muscle of HAD-fed mice, insulin-induced glucose uptake and protein kinase B phosphorylation were reduced. This was paralleled by a 2.5-fold increase in PKCalpha activity. Similarly to in vitro observations, Src phosphorylation was increased in tibialis muscle of HAD-fed mice, and co-precipitation experiments showed that Src interacts with both RAGE and PKCalpha. These results indicate that AGEs impairment of insulin action in the muscle might be mediated by the formation of a multimolecular complex including RAGE/IRS-1/Src and PKCalpha.  相似文献   

2.
Sitagliptin is a stable inhibitor of dipeptidyl peptidase-IV, a responsible enzyme that mainly inactivates glucagon-like peptide-1 (GLP-1), and now one of the widely used agents for the treatment of diabetes. However, effects of sitagliptin on vascular injury are largely unknown. Since advanced glycation end products (AGEs) and their receptor (RAGE) axis contribute to vascular damage in diabetes, we investigated here whether sitagliptin inhibits the AGE-RAGE-induced endothelial cell damage in vitro. Although effects of 10?pM GLP-1 or 0.5?μM sitagliptin monotherapy on RAGE gene and protein expression were modest, combination therapy completely blocked the AGE-induced increase in RAGE mRNA and protein levels in human umbilical vein endothelial cells (HUVEC). AGEs induced reactive oxygen species (ROS) generation and reduced endothelial nitric oxide synthase (eNOS) mRNA level in HUVEC, both of which were also completely blocked by the treatment with 10?pM GLP-1 and 0.5?μM sitagliptin, but not with GLP-1 or sitagliptin monotherapy. Further, anti-RAGE antibody restored the decrease in eNOS mRNA level in AGE-exposed HUVEC. The present study suggests that sitagliptin augments the effects of GLP-1 on eNOS mRNA level in AGE-exposed HUVEC by suppressing RAGE expression and subsequent ROS generation. Sitagliptin may work as a vasoprotecitve agent in diabetes by blocking the AGE-RAGE axis.  相似文献   

3.
Erectile dysfunction (ED) worsens in patients with diabetes mellitus (DM) despite good control of blood glucose level with insulin. Recent studies imply that diabetic vascular stresses (e.g. oxidative stress) persist in spite of glucose normalization, which is defined as metabolic memory. Studies suggest that the interaction between advanced glycation end products (AGEs) and their receptor (RAGE) mediates the development of metabolic memory. To investigate the effects of the antioxidant icariside II plus insulin on erectile function in streptozotocin (STZ)‐ induced type 1 diabetic rats. Fifty 8‐week‐old Sprague‐Dawley rats were randomly distributed into five groups: normal control, diabetic, insulin‐treated diabetic, icariside II‐treated diabetic, and insulin plus icariside II‐treated diabetic. Diabetes was induced by a single intraperitoneal injection of STZ. Eight weeks after induction of diabetes, icariside II was administered by gastric lavage once a day (5 mg/kg) for 6 weeks; and 2–6 units of intermediate‐acting insulin were given to maintain normal glycemia for 6 weeks. The main outcome measures were the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP); histology of penile endothelial cells and smooth muscle cells; neural nitric oxide synthase, AGEs and RAGE expression; malondialdehyde concentration; superoxide dismutase activity; and apoptosis index. Diabetic rats demonstrated a significantly lower ICP/MAP ratio, reduced penile endothelial cells, reduced smooth muscle cells, increased AGEs and RAGE, and increased apoptosis. Insulin and icariside II monotherapy partially restored erectile function and histological changes. However, the combination therapy group showed significantly better erectile parameters, cytological components and biochemistry, similar to those in the normal control group. These results suggest that, although insulin can effectively control glycemic levels, it does not completely alter the pathological changes in erectile tissues. Better efficacy could be expected with tight glycemic control plus the antioxidant icariside II. The proposed combination therapy might have the potential to eliminate metabolic memory by down‐regulating the AGEs‐RAGE‐oxidative stress axis.  相似文献   

4.
The metabolic syndrome is strongly associated with insulin resistance and has been recognized as a cluster of risk factors for cardiovascular disease. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial hyperglycemia. In this study, we investigated the potential utility of combination therapy with telmisartan, an angiotensin II receptor blocker and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial hyperglycemia and metabolic derangements in Zucker Fatty (ZF) rats. ZF rats fed twice daily were given vehicle, 50 mg/kg of nateglinide, 5 mg/kg of telmisartan, or both for 6 weeks. Combination therapy with nateglinide and telmisartan for 2 weeks ameliorated postprandial hyperglycemia in ZF rats fed twice daily. Furthermore, 6-week treatment with nateglinide and telmisartan not only decreased fasting plasma insulin, triglycerides, and free fatty acid levels, but also improved the responses of blood glucose to insulin and subsequently reduced the decremental glucose areas under the curve in the ZF rats. Combination therapy also restored the decrease of plasma adiponectin levels in the ZF rats. Monotherapy with nateglinide or telmisartan alone didnot significantly improve these metabolic parameters. These observations demonstrate that combination therapy with nateglinide and telmisartan may improve the metabolic derangements by ameliorating early phase of insulin secretion as well as insulin resistance in ZF rats fed twice daily. Our present findings suggest that the combination therapy with nateglinide and telmisartan could be a promising therapeutic strategy for the treatment of the metabolic syndrome.  相似文献   

5.
Key pathways like insulin signaling, AMP activated kinase (AMPK) activation and inflammatory signaling are involved in the complex pathological network of hepatic insulin resistance. Our aim is to investigate whether grape seed proanthocyanidins (GSP) and metformin (MET) target any of these pathways in insulin resistant rat liver. Albino Wistar rats were rendered insulin resistant by feeding a high fat-fructose diet (HFFD). Either GSP (100 mg/kg b.w), MET(50 mg/kg b.w) or both were administered to insulin resistant rats as therapeutic options. HFFD-feeding caused hyperglycemia, hyperinsulinemia, increased gluconeogenesis, decreased tyrosine phosphorylation of insulin receptor-β(IR-β) and insulin receptor substrate-1 (IRS-1) and increased serine phosphorylation of IRS-1. The association of p85α subunit of phosphotidyl inositol 3 kinase(PI3K) with IRS-1 and subsequent Akt phosphorylation were reduced while the expression of mitogen activated protein kinases (MAPK) were increased in HFFD rats. Both MET and GSP reduced hyperglycemia and hyperinsulinemia and improved glycolysis, tyrosine phosphorylation of IR-β and IRS-1, IRS-1-PI3K association and Akt activation. However, activation of tumor necrosis factor-α, interleukin-6, leptin and suppressor of cytokine signaling-3 and reduction in adiponectin caused by chronic HFFD feeding were reversed by GSP better than by MET. Activation of AMPK by GSP was much less compared to that by MET. These findings suggest that GSP might activate PI3K pathway and promote insulin action by reducing serine kinase activation and cytokine signaling and MET by targeting AMPK. The beneficial effects were enhanced during combination therapy. Thus, combination therapy with MET and GSP may be considered for the management of metabolic syndrome.  相似文献   

6.
Advanced glycation end products (AGEs) are produced in an irreversible non-enzymatic reaction of carbohydrates and proteins. Patients with diabetes mellitus (DM) are known to have elevated AGE levels, which is viewed as a risk factor of diabetes-related complications. In a clinical setting, it has been shown that patients with oral cancer in conjunction with DM have a higher likelihood of cancer metastasis and lower cancer survival rates. AGE-RAGE (a receptor of AGEs) is also correlated with metastasis and angiogenesis. Recent studies have suggested that the malignancy of cancer may be enhanced by glyceraldehyde-derived AGEs; however, the underlying mechanism remains unclear. This study examined the apparently close correlation between AGE-RAGE and the malignancy of SAS oral cancer cell line. In this study, AGEs increased ERK phosphorylation, enhanced cell migration, and promoted the expression of RAGE, MMP2, and MMP9. Using PD98059, RAGE antibody, and RAGE RNAi to block RAGE pathway resulted in the inhibition of ERK phosphorylation. Cell migration, MMP2 and MMP9 expression were also reduced by this treatment. Our findings demonstrate the importance of AGE-RAGE with regard to the malignancy of oral cancer, and help to explain the poor prognosis of DM subjects with oral cancer.  相似文献   

7.
The effects of angiotensin II type 1 receptor blocker (ARB) on triglyceride (TG) metabolism associated with insulin resistance were explored in Zucker fatty (ZF) rats. Olmesartan medoxomil, a newly developed ARB, was given as a 0.01% drinking solution ad libitum to ZF and Zucker lean (ZL) rats for 4 wk. Olmesartan lowered blood pressure in both strains to the same extent. ZF rats had a markedly low insulin sensitivity index (SI) and glucose effectiveness (SG), together with significantly increased glucose levels. Olmesartan treatment substantially elevated both SI and SG. The ZF rats were hyperlipidemic, with plasma TG levels sixfold higher than those of the ZL rats. Olmesartan remarkably decreased the plasma free fatty acid level in the ZF rats, but it did not exert a significant effect on the plasma TG level. The TG secretion rate assessed by the Triton WR-1339 technique was almost six times higher in the ZF than in the ZL rats, and olmesartan treatment suppressed this TG overproduction by one-half. The TG content in the liver was ten times higher in the ZF than in the ZL rats, and olmesartan halved this high hepatic TG content without affecting the cholesterol content. The fatty liver developed in the ZF rats was ameliorated by olmesartan treatment. Olmesartan treatment had no significant effects on TG metabolism or insulin sensitivity in the ZL rats. Taken in sum, ARB improves the overproduction and accumulation of TG in the liver associated with insulin resistance, and it does so through mechanisms independent of its hypotensive action.  相似文献   

8.
Advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE) have been linked to the pathogenesis of diabetic complications, such as retinopathy, neuropathy, and nephropathy. AGEs may induce β-cell dysfunction and apoptosis, another complication of diabetes. However, the role of AGE-RAGE interaction in AGE-induced pancreatic β-cell failure has not been fully elucidated. In this study, we investigated whether AGE–RAGE interaction could mediate β-cell failure. We explored the potential mechanisms in insulin secreting (INS-1) cells from a pancreatic β-cell line, as well as primary rat islets. We found that glycated serum (GS) induced apoptosis in pancreatic β-cells in a dose- and time-dependent manner. Treatment with GS increased RAGE protein production in cultured INS-1 cells. GS treatment also decreased bcl-2 gene expression, followed by mitochondrial swelling, increased cytochrome c release, and caspase activation. RAGE antibody and knockdown of RAGE reversed the β-cell apoptosis and bcl-2 expression. Inhibition of RAGE prevented AGE-induced pancreatic β-cell apoptosis, but could not restore the function of glucose stimulated insulin secretion (GSIS) in rat islets. In summary, the results of the present study demonstrate that AGEs are integrally involved in RAGE-mediated apoptosis and impaired GSIS dysfunction in pancreatic β-cells. Inhibition of RAGE can effectively protect β-cells against AGE-induced apoptosis, but cannot reverse islet dysfunction in GSIS.  相似文献   

9.
Advanced glycation end products (AGEs) could be implicated in insulin resistance. However, the molecular mechanisms underlying this are not fully understood. Since pigment epithelium-derived factor (PEDF) blocks the AGE-signaling pathways, we examined here whether and how PEDF improves insulin resistance in AGE-exposed hepatoma cells, Hep3B cells. Proteins were extracted from Hep3B cells, immunoprecipitated with or without insulin receptor substrate-1 (IRS-1) antibodies, and subjected to Western blot analysis. Glycogen synthesis was measured using [ (14)C]-d-glucose. AGE induced Rac-1 activation and increased phosphorylation of IRS-1 at serine-307 residues, JNK, c-JUN, and IkappaB kinase in association with decreased IkappaB levels in Hep3B cells. PEDF or overexpression of dominant negative Rac-1 blocked these effects of AGE on Hep3B cells. Further, AGEs decreased tyrosine phosphorylation of IRS-1, and subsequently reduced the association of p85 subunit of phosphatidylinositol 3-kinase with IRS-1 and glycogen synthesis in insulin-exposed Hep3B cells, all of which were inhibited by PEDF. Our present study suggests that PEDF could improve the AGE-elicited insulin resistance in Hep3B cells by inhibiting JNK- and IkappaB kinase-dependent serine phosphorylation of IRS-1 via suppression of Rac-1 activation. PEDF may play a protective role against hepatic insulin resistance in diabetes.  相似文献   

10.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease   总被引:49,自引:0,他引:49  
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase.  相似文献   

11.
Tissue-specific regulation of early steps in insulin action in septic rats.   总被引:1,自引:0,他引:1  
Sepsis is known to induce insulin resistance, but the exact molecular mechanism involved is unknown. In the present study we have examined the levels and phosphorylation state of the insulin receptor and of insulin receptor substrate 1 (IRS-1), as well as the association between IRS-1 and phosphatidylinositol 3-kinase (PI 3-kinase) in the liver and muscle of septic rats by immunoprecipitation and immunoblotting with anti-insulin receptor, anti-IRS-1, anti-PI 3-kinase and anti-phosphotyrosine antibodies. There were no changes in the insulin receptor concentration and phosphorylation levels in the liver and muscle of septic rats. IRS-1 protein levels were decreased by 40+/-3% (p < 0.01) in muscle but not in liver of septic rats. In samples previously immunoprecipitated with anti-IRS-1 antibody and blotted with antiphosphotyrosine antibody, the insulin-stimulated IRS-1 phosphorylation levels in the muscle of septic rats decreased by 38+/-5% (p < 0.01) and insulin-stimulated IRS-1 association with PI 3-kinase decreased by 44+/-7% in muscle (p < 0.01) but no changes were seen in liver. These data suggest that there is a tissue-specific regulation of early steps of insulin signal transduction in septic rats, and the changes observed in muscle may have a role in the insulin resistance of these animals.  相似文献   

12.
Advanced glycation endproducts (AGEs) are a group of modified molecular species formed by nonenzymatic reactions between the aldehydic group of reducing sugars with proteins, lipids, or nucleic acids. Formation and accumulation of AGEs are related to the aging process and are accelerated in diabetes. AGEs are generated in hyperglycemia, but their production also occurs in settings characterized by oxidative stress and inflammation. These species promote vascular damage and acceleration of atherosclerotic plaque progression mainly through two mechanisms: directly, altering the functional properties of vessel wall extracellular matrix molecules, or indirectly, through activation of cell receptor-dependent signaling. Interaction between AGEs and the key receptor for AGEs (RAGE), a transmembrane signaling receptor which is present in all cells relevant to atherosclerosis, alters cellular function, promotes gene expression, and enhances the release of proinflammatory molecules. The importance of the AGE-RAGE interaction and downstream pathways, leading to vessel wall injury and plaque development, has been amply established in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. Blocking the vicious cycle of AGE-RAGE axis signaling may be essential in controlling and preventing cardiovascular complications. In this article, we review the pathogenetic role of AGEs in the development, progression and instability of atherosclerosis, and the potential targets of this biological system for the prevention and treatment of cardiovascular disease.  相似文献   

13.
14.
The impaired adipogenic potential of senescent preadipocytes is a hallmark of adipose aging and aging-related adipose dysfunction. Although advanced glycation end products (AGEs) derived from both foods and endogenous nonenzymatic glycation and AGE-associated signaling pathways are known to play a key role in aging and its related diseases, the role of AGEs in adipose aging remains elusive. We show a novel pro-adipogenic function of AGEs in replicative senescent preadipocytes and mouse embryonic fibroblasts, as well as primary preadipocytes isolated from aged mice. Using glycated bovine serum albumin (BSA) as a model protein of AGEs, we found that glycated BSA restores the impaired adipogenic potential of senescent preadipocytes in vitro and ex vivo. However, glycated BSA showed no effect on adipogenesis in nonsenescent preadipocytes. The AGE-induced receptor for AGE (RAGE) expression is required for the pro-adipogenic function of AGEs in senescent preadipocytes. RAGE is required for impairment of p53 expression and p53 function in regulating p21 expression in senescent preadipocytes. We also observed a direct binding between RAGE and p53 in senescent preadipocytes. Taken together, our findings reveal a novel pro-adipogenic function of the AGE-RAGE axis in p53-regulated adipogenesis of senescent preadipocytes, providing new insights into aging-dependent adiposity by diet-driven and/or endogenous glycated proteins.  相似文献   

15.
Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, plays an important role in obesity-induced insulin resistance. Inhibition of iNOS by gene disruption or pharmacological inhibitors reverses or ameliorates obesity-induced insulin resistance in skeletal muscle and liver in mice. It is unknown, however, whether increased expression of iNOS is sufficient to cause insulin resistance in vivo. To address this issue, we generated liver-specific iNOS transgenic (L-iNOS-Tg) mice, where expression of the transgene, iNOS, is regulated under mouse albumin promoter. L-iNOS-Tg mice exhibited mild hyperglycemia, hyperinsulinemia, insulin resistance, and impaired insulin-induced suppression of hepatic glucose output, as compared with wild type (WT) littermates. Insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and -2, and Akt was significantly attenuated in liver, but not in skeletal muscle, of L-iNOS-Tg mice relative to WT mice without changes in insulin receptor phosphorylation. Moreover, liver-specific iNOS expression abrogated insulin-stimulated phosphorylation of glycogen synthase kinase-3β, forkhead box O1, and mTOR (mammalian target of rapamycin), endogenous substrates of Akt, along with increased S-nitrosylation of Akt relative to WT mice. However, the expression of insulin receptor, IRS-1, IRS-2, Akt, glycogen synthase kinase-3β, forkhead box O1, protein-tyrosine phosphatase-1B, PTEN (phosphatase and tensin homolog), and p85 phosphatidylinositol 3-kinase was not altered by iNOS transgene. Hyperglycemia was associated with elevated glycogen phosphorylase activity and decreased glycogen synthase activity in the liver of L-iNOS-Tg mice, whereas phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and proliferator-activated receptor γ coactivator-1α expression were not altered. These results clearly indicate that selective expression of iNOS in liver causes hepatic insulin resistance along with deranged insulin signaling, leading to hyperglycemia and hyperinsulinemia. Our data highlight a critical role for iNOS in the development of hepatic insulin resistance and hyperglycemia.  相似文献   

16.
Advanced-glycation end products (AGEs) were recently implicated in vascular calcification, through a process mediated by RAGE (receptor for AGEs). Although a correlation between AGEs levels and vascular calcification was established, there is no evidence that reducing in vivo AGEs deposition or inhibiting AGEs-RAGE signaling pathways can decrease medial calcification. We evaluated the impact of inhibiting AGEs formation by pyridoxamine or elimination of AGEs by alagebrium on diabetic medial calcification. We also evaluated if the inhibition of AGEs-RAGE signaling pathways can prevent calcification. Rats were fed a high fat diet during 2 months before receiving a low dose of streptozotocin. Then, calcification was induced with warfarin. Pyridoxamine was administered at the beginning of warfarin treatment while alagebrium was administered 3 weeks after the beginning of warfarin treatment. Results demonstrate that AGEs inhibitors prevent the time-dependent accumulation of AGEs in femoral arteries of diabetic rats. This effect was accompanied by a reduced diabetes-accelerated calcification. Ex vivo experiments showed that N-methylpyridinium, an agonist of RAGE, induced calcification of diabetic femoral arteries, a process inhibited by antioxidants and different inhibitors of signaling pathways associated to RAGE activation. The physiological importance of oxidative stress was demonstrated by the reduction of femoral artery calcification in diabetic rats treated with apocynin, an inhibitor of reactive oxygen species production. We demonstrated that AGE inhibitors prevent or limit medial calcification. We also showed that diabetes-accelerated calcification is prevented by antioxidants. Thus, inhibiting the association of AGE-RAGE or the downstream signaling reduced medial calcification in diabetes.  相似文献   

17.
As a serious metabolic disease, diabetes causes series of complications that seriously endanger human health. The liver is a key organ for metabolizing glucose and lipids, which substantially contributes to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Exogenous fibroblast growth factor 1 (FGF1) has a great potential for the treatment of diabetes. Receptor of advanced glycation end products (RAGE) is a receptor for advanced glycation end products that involved in the development of diabetes-triggered complications. Previous study has demonstrated that FGF1 significantly ameliorates diabetes-mediated liver damage (DMLD). However, whether RAGE is involved in this process is still unknown. In this study, we intraperitoneally injected db/db mice with 0.5 mg/kg FGF1. We confirmed that FGF1 treatment not only significantly ameliorates diabetes-induced elevated apoptosis in the liver, but also attenuates diabetes-induced inflammation, then contributes to ameliorate liver dysfunction. Moreover, we found that diabetes triggers the elevated RAGE in hepatocytes, and FGF1 treatment blocks it, suggesting that RAGE may be a key target during FGF1 treatment of diabetes-induced liver injury. Thus, we further confirmed the role of RAGE in FGF1 treatment of AML12 cells under high glucose condition. We found that D-ribose, a RAGE agonist, reverses the protective role of FGF1 in AML12 cells. These findings suggest that FGF1 ameliorates diabetes-induced hepatocyte apoptosis and elevated inflammation via suppressing RAGE pathway. These results suggest that RAGE may be a potential therapeutic target for the treatment of DMLD.  相似文献   

18.
19.
Insulin receptor substrate-1 (IRS-1) and IRS-2 are known to transduce and amplify signals emanating from the insulin receptor. Here we show that Grb2-associated binder 1 (Gab1), despite its structural similarity to IRS proteins, is a negative modulator of hepatic insulin action. Liver-specific Gab1 knockout (LGKO) mice showed enhanced hepatic insulin sensitivity with reduced glycemia and improved glucose tolerance. In LGKO liver, basal and insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2 was elevated, accompanied by enhanced Akt/PKB activation. Conversely, Erk activation by insulin was suppressed in LGKO liver, leading to defective IRS-1 Ser612 phosphorylation. Thus, Gab1 acts to attenuate, through promotion of the Erk pathway, insulin-elicited signals flowing through IRS and Akt proteins, which represents a novel balancing mechanism for control of insulin signal strength in the liver.  相似文献   

20.
Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号