首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
R M Binks  M A Millar  M Byrne 《Heredity》2015,115(3):235-242
For plants with mixed reproductive capabilities, asexual reproduction is more frequent in rare species and is considered a strategy for persistence when sexual recruitment is limited. We investigate whether asexual reproduction contributes to the persistence of two co-occurring, rare sedges that both experience irregular seed set and if their differing geographic distributions have a role in the relative contribution of clonality. Genotypic richness was high (R=0.889±0.02) across the clustered populations of Lepidosperma sp. Mt Caudan and, where detected, clonal patches were small, both in ramet numbers (⩽3 ramets/genet) and physical size (1.3±0.1 m). In contrast, genotypic richness was lower in the isolated L. sp. Parker Range populations, albeit more variable (R=0.437±0.13), with genets as large as 17 ramets and up to 5.8 m in size. Aggregated clonal growth generated significant fine-scale genetic structure in both species but to a greater spatial extent and with additional genet-level structure in L. sp. Parker Range that is likely due to restricted seed dispersal. Despite both species being rare, asexual reproduction clearly has a more important role in the persistence of L. sp. Parker Range than L. sp. Mt Caudan. This is consistent with our prediction that limitations to sexual reproduction, via geographic isolation to effective gene exchange, can lead to greater contributions of asexual reproduction. These results demonstrate the role of population isolation in affecting the balance of alternate reproductive modes and the contextual nature of asexual reproduction in rare species.  相似文献   

2.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

3.
The persistence of asexual reproduction in many taxa depends on a balance between the origin of new asexual lineages and the extinction of old ones. This turnover determines the diversity of extant asexual populations and so influences the interaction between sexual and asexual modes of reproduction. Species with mixed reproduction, like the freshwater ostracod (Crustacea) morphospecies Eucypris virens, are a good model to examine these dynamics. This species is also a geographic parthenogen, in which sexual females and males co-exist with asexual females in the circum-Mediterranean area only, whereas asexual females occur all over Europe. A molecular phylogeny of E. virens based on the mitochondrial COI and 16S fragments is presented. It is characterised by many distinct clusters of haplotypes which are either exclusively sexual or asexual, with only one exception, and are often separated by deep branches. Analysis of the phylogeny reveals an astonishing cryptic diversity, which indicates the existence of a species complex with more than 40 cryptic taxa. We therefore suggest a revision of the single species status of E. virens. The phylogeny indicates multiple transitions from diverse sexual ancestor populations to asexuality. Although many transitions appear to be ancient, we argue that this may be an artefact of the existence of unsampled or extinct sexual lineages.  相似文献   

4.
The general prevalence of sexual reproduction over asexual reproduction among organisms testifies to the evolutionary benefits of recombination, such as accelerated adaptation to changing environments and elimination of deleterious mutations. Documented instances of asexual reproduction in groups otherwise dominated by sexual reproduction challenge evolutionary biologists to understand the special circumstances that might confer an advantage to asexual reproductive strategies. Here we report one such instance of asexual reproduction in the ants. We present evidence for obligate thelytoky in the asexual fungus-gardening ant, Mycocepurus smithii, in which queens produce female offspring from unfertilized eggs, workers are sterile, and males appear to be completely absent. Obligate thelytoky is implicated by reproductive physiology of queens, lack of males, absence of mating behavior, and natural history observations. An obligate thelytoky hypothesis is further supported by the absence of evidence indicating sexual reproduction or genetic recombination across the species'' extensive distribution range (Mexico-Argentina). Potential conflicting evidence for sexual reproduction in this species derives from three Mycocepurus males reported in the literature, previously regarded as possible males of M. smithii. However, we show here that these specimens represent males of the congeneric species M. obsoletus, and not males of M. smithii. Mycocepurus smithii is unique among ants and among eusocial Hymenoptera, in that males seem to be completely absent and only queens (and not workers) produce diploid offspring via thelytoky. Because colonies consisting only of females can be propagated consecutively in the laboratory, M. smithii could be an adequate study organism a) to test hypotheses of the population-genetic advantages and disadvantages of asexual reproduction in a social organism and b) inform kin conflict theory.For a Portuguese translation of the abstract, please see Abstract S1.  相似文献   

5.
Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species’ mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.  相似文献   

6.
Observed levels of population genetic diversity are often associated with differences in species dispersal and reproductive strategies. In symbiotic organisms, the genetic diversity level of each biont should also be highly influenced by biont transmission. In this study, we evaluated the influence of the reproductive strategies of cyanolichen species on the current levels of population genetic diversity of bionts. To eliminate any phylogenetic noise, we selected two closely related species within the genus Degelia, which only differ in their reproductive systems. We sampled all known populations of both species in central Spain and genotyped the fungal and cyanobacterial components of lichen samples using DNA sequences as molecular markers. We applied population genetics approaches to evaluate the genetic diversity and population genetic structure of the symbiotic components of both lichen species. Our results indicate that fungal and cyanobiont genetic diversity is highly influenced by the reproductive systems of lichen fungus. We detected higher bionts genetic diversity values in the sexual species Degelia plumbea. By contrast, the levels of fungal and cyanobiont genetic diversity in the asexual species Degelia atlantica were extremely low (almost clonal), and the species shows a high specificity towards its cyanobiont. Our results indicate that reproduction by vegetative propagules, in species of the genus Degelia, favors vertical transmission and clonality, which affects the species’ capacity for resources and competition, thereby limiting the species to restricted niches.  相似文献   

7.
There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.  相似文献   

8.
Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations of Daphnia dentifera to determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations of D. dentifera for 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.  相似文献   

9.
We studied the mode of reproduction and its evolution in the fungal subgenus Penicillium Biverticillium using phylogenetic and experimental approaches. We sequenced mating type (MAT) genes and nuclear DNA fragments in sexual and putatively asexual species. Examination of the concordance between individual trees supported the recognition of the morphological species. MAT genes were detected in two putatively asexual species and were found to evolve mostly under purifying selection, although high substitution rates were detected at some sites in some clades. The first steps of sexual reproduction could be induced under controlled conditions in one of the two species, although no mature cleistothecia were produced. Altogether, these findings suggest that the asexual Penicillium species may have lost sex only very recently and/or that the MAT genes are involved in other functions. An ancestral state reconstruction analysis indicated several events of putative sex loss in the genus. Alternatively, it is possible that the supposedly asexual Penicillium species may have retained a cryptic sexual stage.  相似文献   

10.
Genes of the major histocompatibility complex (MHC) encode molecules that control immune recognition and are highly polymorphic in most vertebrates. The remarkable polymorphisms at MHC loci may be maintained by selection from parasites, sexual selection, or both. If asexual species show equal (or higher) levels of polymorphisms at MHC loci as sexual ones, this would mean that sexual selection is not necessary to explain the high levels of diversity at MHC loci. In this study, we surveyed the MHC diversity of the asexual amazon molly (Poecilia formosa) and one of its sexual ancestors, the sailfin molly (P. latipinna), which lives in the same habitat. We found that the asexual molly has polymorphic MHC loci despite its clonal reproduction, yet not as polymorphic as the sexual species. Although the nucleotide diversity was similar between the asexual and sexual species, the sexual species exhibited a greater genotypic diversity compared to the asexual one from the same habitats. Within‐genome diversity was similar for MHC class I loci, but for class IIB, the sexual species had higher diversity compared to the asexual — despite the hybrid origins and higher levels of heterozygosity at microsatellite loci in the asexual species. The level of positive selection appears to be similar between the two species, which suggests that these polymorphisms are maintained by selection. Thus, our findings do not allow us to rule out the sexual selection hypothesis for the evolution of MHC diversity, and although the sexual fish has higher levels of MHC‐diversity compared to the asexual species, this may be due to differences in demography, parasites, or other factors, rather than sexual selection.  相似文献   

11.
The populations of several invasive jellyfish appear to be increasing around the globe. While data on non-native hydromedusae in the San Francisco Estuary have been accumulating in recent years, little is known regarding their polyp phase. The goal of this study was to gather the first field-derived ecological data for polyp stages of Blackfordia virginica, Moerisia sp., and Cordylophora caspia in the estuary. Monthly fouling plates were deployed at five sites during 2007 and 2008. Settlement data indicate a seasonal presence of B. virginica and Moerisia sp., with both distribution and abundance correlated with a combination of water quality and physical parameters. Cordylophora caspia appeared to be present beyond the time period sampled and may be active in the system year-round. The ability of polyps to persist month to month was low, likely due to predation by other non-native species and competition for space.  相似文献   

12.
Rosa multiflora Thunb., (Rosaceae), an invasive plant in the eastern U.S., was introduced into the U.S. in the early 1800s and was widely planted in the 1940s as a living fence, for wildlife cover, and to prevent soil erosion. This species spread rapidly from these original plantings via seed dispersal (sexual reproduction) and clonal spread, invading pasture and wooded areas. In this study we used allozyme markers to test for significant differences in the levels of asexual and sexual spread in large (>9 m cirumference) verses small (<2 m circumference) patches of R. multiflora and in pasture verses park settings. Although larger patches of R. multiflora tended to be dominated by one genotype, they exhibited significantly greater genetic diversity and inputs from sexual reproduction than did small patches; all large patches (N = 10) contained multiple unique genotypes. In contrast six of ten smaller patches of R. multiflora, consisted of a single genotype, though three patches had two genotypes and one had three unique genotypes. Similar analyses revealed clonal structure in R. multiflora populations both park and pasture habitats but with significantly greater genetic diversity and sexual inputs in the former than the latter. These results are consistent with a model of invasive spread involving clonal spread, sexual reproduction, and bird-mediated seed dispersal into established patches. Sexual inputs appear to be highest in larger patches and park habitats where perching sites for birds are most abundant. This flexible reproduction system likely contributes to the invasiveness of R. multiflora and to current management failures.  相似文献   

13.
A survey of spatial and temporal variation in the frequency of electrophoretically defined genotypes in the geometrid moth Alsophila pometaria revealed a high diversity of uncommon or rare asexual genotypes and clinal distributions of two of the more common clones. There was substantial year-to-year variation in genotype frequencies in seven of eleven sites. Progeny tests have revealed that sexual reproduction is uncommon in two populations and that new asexual genotypes arise from the sexual population. The recurrent origin of asexual genotypes is likely to account for the high genetic and ecological diversity of the asexual contingent of this species' populations, in contrast to the lower genetic diversity in some obligately asexual species in which such recruitment does not occur.  相似文献   

14.
The reproductive composition and genetic diversity of populations of the red seaweed Lithothrix aspergillum Gray (O. Corallinales) were studied at three southern California sites (Shaw's Cove and Treasure Island, Laguna Beach; Indian Rock, Santa Catalina Island) and at a fourth site (Bodega Bay) located in northern California. Sexually reproducing populations were confined to southern California. Diploid individuals were numerically dominant over haploid (gametophytic) individuals at all sites. Intertidal and subtidal subpopulations from Shaw's Cove differed in their reproductive profiles. Most intertidal specimens found on emersed surfaces were densely branched, turf-forming, and bore tetrasporangial (68.6%), carposporangial (11.4%), or spermatangial (5.7%) conceptacles, reflecting a sexual life history; none produced asexual bispores. In contrast, 74.3% of the larger, loosely branched subtidal specimens bore bisporangial conceptacles indicative of asexual reproduction. Nearly 70% of the Indian Rock thalli showed no evidence of conceptacle formation. Only asexual, diploid bispore-producing thalli were obtained from the Bodega Bay site. Genetic diversity (mean number of alleles per locus, percent of polymorphic loci, and average expected heterozygosity) of diploid L. aspergillum populations varied with life-history characteristics and geographic location. A total of 30 alleles was inferred from zymograms of 16 loci examined by starch-gel electrophoresis; of these loci, 11 were polymorphic. The genetic diversity of sexual, diploid populations of L. aspergillum (alleles per locus [A/L] = 1.4-1.5; percent polymorphic loci [%P] = 37.5-50.0) was relatively high compared with other red seaweeds. Lowest diversity (A/L = 1.0; %P = 0.0) occurred in the exclusively asexual Bodega Bay population which consisted of genetic clones. All sexual L. aspergillum populations deviated significantly from Hardy-Wein-berg expectations due to lower than expected heterozygosity. Genetic differentiation (Wright's Fstatistic [FST]; Nei's Genetic Distance [D]) among sexually reproducing southern California populations was low (FST= 0.030) on a local scale (ca. 5 km), suggesting high levels of gene flow, but high genetic differention (FST= 0.390 and 0.406) occurred among southern California populations separated by ca. 70 km. Very high genetic differentiation (FST= 0.583–0.683) was obtained between northern and southern California populations separated by 700–760 km. Our genetic and reproductive data suggest that the L. aspergillum population from Bodega Bay is sustained by perennation, vegetative propagation, or asexual reproduction by bispores and may represent an isolated remnant or a population established by a founder event.  相似文献   

15.
16.
The genetic structure of two related yeast species, one sexual and one asexual, was compared using polymorphic DNA markers. Although both yeasts propagate by asexual budding of haploid cells, Metschnikowia borealis reproduces sexually when compatible strains come in contact. To what extent this has occurred in nature was not known. As Candida ipomoeae is a closely related, asexual species, the two yeasts provide an excellent model system to assess the role of sexual reproduction in a biogeographic context. Natural isolates of the two species were characterized using several polymorphic DNA markers. As predicted for an organism whose reproduction is strictly clonal, C. ipomoeae exhibited low haplotype diversity, high linkage disequilibrium, and high population differentiation. In contrast, M. borealis had unique haplotypes in most isolates, lower population differentiation, and little linkage disequilibrium, demonstrating that sexual recombination is prevalent. Geographic gradients were identified in both species, indicating that historical and climatic factors both play a role in shaping the populations. The spatial structure is also thought to be influenced by the ecology of the small floricolous beetles (family Nitidulidae) that vector the yeasts. For example, Hawaiian strains of C. ipomoeae show evidence of having undergone a genetic bottleneck, most likely when the vector was introduced to the islands. The two haplotypes found in Hawaii were nearly identical and were also found in North and Central America. M. borealis had a more continuous distribution where the genetic markers follow latitudinal and longitudinal gradients.  相似文献   

17.
Metagenomic Characterization of Chesapeake Bay Virioplankton   总被引:7,自引:1,他引:6       下载免费PDF全文
Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.  相似文献   

18.
19.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

20.
One of the most promising hypotheses for the evolution of sex is that sexual reproduction is advantageous because it increases the rate of adaptive evolution in response to parasites. To investigate this advantage of sex, we compared genetic variation of geminiviruses infecting sexual and asexual populations of Eupatorium (Asteraceae). The infection frequency was 37.5% in the sexual population and 87.8% in the asexual population. The lower infection frequency in the sexual population might be the result of higher genetic diversity of host plants. If geminiviruses have diverged to counter defence systems of genetically variable hosts, genetic diversity of viruses is expected to be higher in sexual host populations than in asexual host populations. To test this expectation, we used single-strand conformation polymorphism (SSCP) analysis to examine genetic diversity of the geminiviruses in a DNA region containing the open-reading frame (ORF) C4 gene, which is known to function as a host range determinant. As predicted, higher genetic diversity of viruses was observed in the sexual population: three SSCP types were found in the asexual population while six types were found in the sexual population. Sequencing of the polymerase chain reaction (PCR) products revealed further genetic diversity. Phylogenetic analysis of the sequences showed that the SSCP types belonged to four different clades. Several SSCP types from the same clade were found in the sexual population, whereas the asexual population included only one SSCP type from each clade. Amino acid replacements of ORF C4 are suggested to be accelerated in the sexual population. This evidence supports the hypothesis that sexual reproduction is advantageous as a defence against epidemic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号