首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

2.
The effect of 3-methoxybenzidine on the conversion of cholesterol to pregnenolone was investigated using a reconstituted enzyme system comprised of adrenodoxin, adrenodoxin reductase and cytochrome P-450scc purified from bovine adrenal cortex. Under conditions where the cytochrome P-450scc concentration was rate-limiting, 3-methoxybenzidine was found to be a potent inhibitor, causing 50% inhibition at 7 μM when using a cholesterol concentration of 70 μM. The parent compound, benzidine, was much less effective, exhibiting an Icn value of approximately 40 μM. No effect of 3-methoxybenzidine was observed on the adrenodoxin reductase and adrenodoxin-catalyzed reduction of cytochrome c by NADPH, and it is concluded that 3-methoxybenzidine acts on cytochrome P-450scc in inhibiting cholesterol side chain cleavage.  相似文献   

3.
To investigate the molecular basis for the pattern of ovarian steroid production during the bovine estrous cycle, the relative levels of mRNA specific for cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor were determined in ovarian antral follicles of differing size (less than 3-18 mm) and corpora lutea from the early, early-mid, late-mid, and regressionary stages. Total and poly(A)+ RNA was size-fractionated on agarose-formaldehyde gels, transferred to nylon filters and hybridized to specific 32P-labeled probes. The levels of mRNAs for the rate-limiting enzymes in the conversion of cholesterol into progesterone, namely cholesterol side-chain cleavage cytochrome P-450 and its electron donor, adrenodoxin, were higher in corpora lutea than in follicles. Conversely the levels of mRNA specific for the key regulatory enzyme in the conversion of pregnenolone or progesterone to androgen, namely 17 alpha-hydroxylase cytochrome P-450, were high in all antral follicles examined but were low in young corpora lutea and undetectable in more mature corpora lutea. Low density lipoprotein receptor mRNA was detectable in antral follicles and corpora lutea but the levels were greater in corpora lutea. These results suggest that the pattern of changes in steroid hormone biosynthesis during the bovine estrous cycle and in the ovarian content of steroidogenic enzymes is related to and probably dependent upon the pattern of change in levels of mRNAs for steroidogenic enzymes and related proteins.  相似文献   

4.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

5.
A method for purification of C27-steroid hydroxylating cytochrome P-450 (cytochrome P-450(27)) from bovine liver mitochondria was developed. The purification procedure included enzyme extraction from submitochondrial particles with sodium cholate, ammonium sulfate fractionation and biospecific chromatography on cholate-Sepharose and adrenodoxin-Sepharose. The resulting enzyme preparation (317-fold purification, 16% yield) was not electrophoretically homogeneous but did not contain hemoprotein admixtures. The kinetic parameters of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylation in a reconstituted system containing hepatoredoxin reductase, hepatoredoxin and cytochrome P-450(27) (Km = 23 microM, kcat = 0.3 s-1 at 25 degrees C) were determined. A reciprocal functional equivalency of hepatoredoxin reductase and adrenodoxin reductase as well as of hepatoredoxin and adrenodoxin in reconstituted systems of steroid 27-hydroxylation (liver) and cholesterol side chain cleavage (adrenal cortex) was established. This equivalency was thought to be due to the similarity in essential physico-chemical properties of reductase components which was especially well-pronounced in the case of hepatoredoxin and adrenodoxin. Estimation of the functional role of lysine, dicarboxylic acid and histidine residues in ferredoxin molecules by the chemical modification method revealed the similarity of the structural organization of their protein globules: the polar residues were shown to be essential for the maintenance of native conformation; dicarboxylic acid residues formed a binding domain for the interaction with electron transport proteins, whereas histidine residues seem to participate in electron transport. At the same time, cytochrome P-450(27) and cytochrome P-450 which split the side chain of cholesterol differ in their substrate specificity, immunochemical and catalytic properties.  相似文献   

6.
The actions of follicle-stimulating hormone (FSH), 8-bromo-cyclic AMP (8-Br-cAMP), and low density lipoprotein (LDL) to stimulate the production of progesterone and the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450ssc) and adrenodoxin were investigated in bovine granulosa cells maintained in primary monolayer culture. Treatment of granulosa cells in culture with FSH resulted in an increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc in a concentration-dependent fashion with a maximal effect being obtained at an FSH concentration of 500 ng/ml. Treatment of granulosa cells with FSH also resulted in the induction of synthesis of adrenodoxin. The cyclic AMP analog, 8-Br-cAMP, induced the synthesis of both cytochrome P-450scc and adrenodoxin to a greater extent than did FSH. LDL also stimulated the synthesis of both cytochrome P-450scc and adrenodoxin, when added to cells maintained in the presence of lipoprotein-poor serum. The presence of FSH or 8-Br-cAMP together with LDL resulted in a higher rate of enzyme synthesis than that observed with each effector alone. FSH, 8-Br-cAMP, and LDL also stimulated progesterone production by cultured granulosa cells. The results of this study offer a possible mechanism whereby granulosa cells undergo cytodifferentiation in vivo into luteal cells. The concentration of LDL in follicular fluid is very low. Following ovulation, vascularization of the follicle occurs and thus the granulosa cells are exposed to high levels of LDL, allowing for provision of substrate cholesterol, as well as stimulation of the synthesis of the enzymes involved in cholesterol side chain cleavage.  相似文献   

7.
Cytochrome P-450 was purified from pig testis mitochondria to a specific content of 13.1 n mol/mg of protein. The purified preparation was found to contain a single species of P-450, on sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular weight of about 53000 +/- 2000. The cholesterol side chain-cleavage system could be reconstituted by mixing the purified cytochrome P-450, adrenodoxin reductase, adrenodoxin, cholesterol and NADPH. The rate of conversion of cholesterol to pregnenolone was 6.2 n mol/min/n mol of P-450 under the conditions employed. The absorption spectrum of the oxidized cytochrome P-450 had maxima at 416, 530 and 568 nm. The reduced CO-complex of the cytochrome P-450 exhibited an absorption maximum at 448 nm. The purified P-450 was subjected to microsequence analysis and its NH2-terminal amino acid sequence was found to show considerable homology with that of bovine adrenal P-450 (SCC).  相似文献   

8.
18- and 11beta-Hydroxylation of deoxycorticosterone and side chain cleavage of cholesterol were studied in mitochondria and submitochondrial reconstituted systems prepared from rat and bovine adrenals. A mass fragmentographic technique was used that allows determination of hydroxylation of both exogenous and endogenous cholesterol. The following results were obtained. (1) Treatment of rats with excess potassium chloride in drinking fluid increased mitochondrial cytochrome P-450 as well as 18- and 11beta-hydroxylase activity in the adrenals. Cholesterol side chain cleavage was not affected. In the presence of excess adrenodoxin and adrenodoxin reductase, cytochrome P-450 isolated from potassium chloride-treated rats had higher 18- and 11beta-hydroxylase activity per nmol than cytochrome P-450 isolated from control rats. The stimulatory effects on 18- and 11beta-hydroxylation were of similar magnitude. (2) Long-term treatment with ACTH increased cholesterol side chain cleavage in the adrenals but had no effect on 18- and 11beta-hydroxylase activity. The amount of cytochrome P-450 in the adrenals was not affected by the treatment. It was shown with isolated mitochondrial cytochrome P-450 in the presence of excess adrenodoxin and adrenodoxin reductase that the effect of ACTH was due to increase of side chain cleavage activity per nmol cytochrome P-450. Side chain cleavage of exogenous cholesterol was affected more than that of endogenous cholesterol. (3) Gel chromatography of soluble cytochrome P-450 prepared from rat and bovine adrenal mitochondria yielded chromatographic fractions having either a high 18- and 11beta-hydroxylase activity and a low cholesterol side chain cleavage activity or the reverse. The ratio between 18- and 11beta-hydroxylase activity was approximately constant, provided the origin of cytochrome P-450 was the same. (4) Addition of progesterone to incubations of deoxycorticosterone with soluble or insoluble rat adrenal cytochrome P-450 competitively inhibited 18- and 11beta-hydroxylation of deoxycorticosterone to the same degree. Addition of deoxycorticosterone competitively inhibited 11beta-hydroxylation of progesterone with the same system. Progesterone was not 18-hydroxylated by the system. From the results obtained, it is concluded that 18- and 11beta-hydroxylation have similar properties and that the binding site for deoxycorticosterone is similar or identical in the two hydroxylations. The possibility that the same specific type of cytochrome P-450 is responsible for both 18- and 11beta-hydroxylation of deoxycorticosterone is discussed.  相似文献   

9.
Human placental mitochondrial cytochrome P-450 was purified to electrophoretic homogeneity by hydrophobic, anion exchange and cation exchange column chromatography. The specific content of the purified protein was 15.7 nmol/mg protein and it showed a single band mol. wt 48,000 D in SDS-gel electrophoresis. When reconstituted with bovine adrenal adrenodoxin reductase and adrenodoxin it converted cholesterol to pregnenolone (cholesterol side-chain cleavage activity, CSCC) at the rate of 1 pmol/min/pmol P-450. Antibodies against the purified protein were raised in rabbits. Inhibition studies demonstrated 85% inhibition of placental CSCC activity at an antibody/protein ratio of 10:1. Placental microsomal aromatase activity was inhibited by 47% at the same antibody/protein ratio. The antibody inhibited bovine mitochondrial CSCC activity by 87% at the same antibody/protein ratio. Placental microsomal 7-ethoxycoumarin O-deethylase, aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities were not significantly inhibited by the antibody. The results indicate that the purified protein catalyzes cholesterol side-chain cleavage reaction, human placental microsomal aromatase and bovine adrenal mitochondrial P-450scc may share common antigenic determinants with placental P-450scc, but the placental microsomal xenobiotic-metabolizing cytochrome(s) is (are) distinctly different.  相似文献   

10.
Purified bovine adrenocortical cytochrome P-450scc (specific for cholesterol side chain cleavage in the inner mitochondrial membrane) was selectively phosphorylated in vitro by a Ca2+-activated, phospholipid-sensitive protein kinase (protein kinase C) preparation, whereas cyclic AMP dependent and two cyclic nucleotide independent kinases were ineffective. Cytochrome P-450scc incorporated a maximum of 4 mol of phosphate in the presence of protein kinase C within 15 min at 30 degrees C, with apparent Km and Vmax of 0.14 mumol and 0.76 pmol/min, respectively. Serine and threonine were the two target aminoacids phosphorylated in a ratio of about 1:1. In the presence of 1 microM Ca2+, a mixture of phosphatidylserine and diolein (or a potent tumor promoter phorbol ester) was required for optimal cytochrome P-450scc phosphorylation. In addition, purified inner mitochondrial membrane preparations from adrenocortical mitochondria were found to contain protein kinase C activity. These findings, together with the previous demonstration that activators of protein kinase C such as a potent phorbol ester activates steroidogenesis of intact adrenocortical cells, suggest that phosphorylation of P-450scc should be examined for its possible role in the regulation of adrenocortical functions.  相似文献   

11.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

12.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

14.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

15.
An iron-sulfur protein has been isolated from bovine brain mitochondria and purified 200-fold. The optical spectrum (peaks at 412 and 455 nm which disappear upon reduction) and the EPR spectrum (g values at 1.94 and 2.02) were typical for a ferredoxin. In reconstitution experiments, the protein could replace adrenodoxin in the cholesterol side chain cleavage reaction. The additional detection of cytochrome P-450 in brain mitochondria indicates that the isolated ferredoxin is part of a cytochrome P-450-dependent hydroxylation system.  相似文献   

16.
The specific contents of cytochrome P-450scc and adrenodoxin in corpora lutea of late pregnant sheep were, respectively, 1/5 and 1/8 that of corpora lutea of the oestrous cycle, suggesting lower steroidogenic enzyme capacity in the former. The contents of Complex V proteins were also lower in the corpora lutea of late pregnancy. It was observed in the immunoblots of both Complex V and cytochrome P-450scc that immunoreactive bands of molecular weights lower than the native proteins were present in the samples from corpora lutea of late pregnancy, indicative of degradation of the native enzymes. It is concluded that corpora lutea of sheep during late pregnancy have a much lower enzyme capacity for steroidogenesis than do those of the oestrous cycle (mid-luteal phase) due to a reduction in the content of cytochrome P-450scc and adrenodoxin. The reduction in the levels of steroidogenic enzyme proteins appears to be unspecific and probably reflects an overall demise in mitochondrial functions.  相似文献   

17.
Rat Leydig cells in primary culture were used as a model system to investigate the effects of human chorionic gonadotropin (hCG) and dibutyryl cyclic AMP (Bt2cAMP) on the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and the iron-sulfur protein, adrenodoxin. Leydig cells isolated from the testes of mature rats were placed in monolayer culture in the absence of stimulatory factors for 8 days. HCG (10 mIU/ml) or Bt2cAMP (1 mM) were then added to some of the cultures and the incubations were continued for up to 48 h. Testosterone production was increased markedly in cells incubated with hCG or Bt2cAMP. A significant accumulation of pregnenolone in the medium of cells treated with Bt2cAMP was also observed. Both hCG and Bt2cAMP increased the rates of synthesis of cytochrome P-450scc and adrenodoxin. In hCG-treated cells the apparent rate of synthesis of cytochrome P-450scc was increased 13-fold over that of controls after 48 h of incubation; the rate of adrenodoxin synthesis was increased 4-fold by hCG treatment. In Bt2cAMP-treated cells the rate of synthesis of cytochrome P-450scc was 37-fold greater than that of control cells after 48 h of incubation; adrenodoxin synthesis was increased 36-fold over controls. In hCG- and Bt2cAMP-treated cells, the concentration of immunoreactive cytochrome P-450scc and adrenodoxin increased with increasing time of incubation, and were correlated with the stimulatory effects of these agents on cytochrome P-450scc activity and on total steroid production. The results of this study are indicative that the maintenance by LH/hCG of elevated levels of testosterone synthesis by the Leydig cell is mediated, in part, by induction of the synthesis of cytochrome P-450scc and its associated protein, adrenodoxin. Since Bt2cAMP had effects similar to those observed with hCG, it is suggested that the stimulatory effects of hCG on the synthesis of cytochrome P-450scc and adrenodoxin are mediated by increased cyclic AMP formation.  相似文献   

18.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

19.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

20.
The immunochemical relatedness between human and bovine proteins catalyzing the cholesterol side-chain cleavage reaction was investigated. In dot-immunobinding analysis, antibodies against bovine adrenocortical cytochrome P-450SCC, adrenodoxin, and adrenodoxin reductase recognized the corresponding proteins in a dose-dependent manner in mitochondrial preparations from human placenta. Limited proteolysis with trypsin cleaved bovine P-450SCC into fragments F1 and F2, which represent the NH2- and C-terminal parts of P-450SCC, respectively. Identical trypsin treatment yielded similar-size fragments from human placental P-450SCC. In Western immunoblots, anti-F1 and anti-F2 antibodies recognized the corresponding fragments in both trypsin-digested bovine and human P-450SCC. Antibodies against bovine P-450SCC, fragments F1 and F2, adrenodoxin and adrenodoxin reductase inhibited cholesterol side-chain cleavage activity in bovine adrenocortical mitochondria by 24-51%, but failed to affect the activity in human placental mitochondria. These data indicate that human and bovine P-450SCC share common antigenic determinants located outside the enzyme active site. The immunological similarity between bovine adrenodoxin and human ferredoxin allowed for a simple purification protocol of human placental P-450SCC by adrenodoxin affinity chromatography. The P-450SCC obtained by this method was electrophoretically homogeneous and showed characteristics typical to P-450SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号