首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The solution structures of three related peptides (A1, A2, and A9) corresponding to the Thr(671)-Leu(690) region of the skeletal muscle dihydropyridine receptor II-III loop have been investigated using nuclear magnetic resonance spectroscopy. Peptide A1, the native sequence, is less effective in activating ryanodine receptor calcium release channels than A2 (Ser(687) to Ala substitution). Peptide A9, Arg(681)-Ser(687), does not activate ryanodine receptors. A1 and A2 are helical from their N terminus to Lys(685) but are generally unstructured from Lys(685) to the C terminus. The basic residues Arg(681)-Lys(685), essential for A1 activation of ryanodine receptors, are located at the C-terminal end of the alpha-helix. Peptide A9 was found to be unstructured. Differences between A1 and A2 were observed in the C-terminal end of the helix (residues 681-685), which was less ordered in A1, and in the C-terminal region of the peptide, which exhibited greater flexibility in A1. Predicted low energy models suggest that an electrostatic interaction between the hydroxyl oxygen of Ser(687) and the guanidino moiety of Arg(683) is lost with the Ser(687)Ala substitution. The results show that the more structured peptides are more effective in activating ryanodine receptors.  相似文献   

2.
A 25 amino acid segment (Glu666-Pro691) of the II-III loop of the alpha1 subunit of the skeletal dihydropyridine receptor, but not the corresponding cardiac segment (Asp788-Pro814), activates skeletal ryanodine receptors. To identify the structural domains responsible for activation of skeletal ryanodine receptors, we systematically replaced amino acids of the cardiac II-III loop with their skeletal counterparts. A cluster of five basic residues of the skeletal II-III loop (681RKRRK685) was indispensable for activation of skeletal ryanodine receptors. In the cardiac segment, a negatively charged residue (Glu804) appears to diminish the electrostatic potential created by this basic cluster. In addition, Glu800 in the group of negatively charged residues 798EEEEE802 of the cardiac II-III loop may serve to prevent the binding of the activation domain.  相似文献   

3.
Evidence for functional interactions between the Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) and the L-type Ca2+ channel in the sarcolemma (the dihydropyridine receptor), leading to excitation-contraction coupling, is reviewed and experimental systems used to identify candidate sites of interaction are outlined.  相似文献   

4.
Our previous study (El-Hayek, R., Antoniu, B., Wang, J. P., Hamilton, S. L., and Ikemoto, N. (1995) J. Biol. Chem. 270, 22116-22118) suggested the hypothesis that skeletal muscle-type excitation-contraction coupling is regulated by two domains (activating and blocking) of the II-III loop of the dihydropyridine receptor alpha1 subunit. We investigated this hypothesis by examining conformational changes in the ryanodine receptor induced by synthetic peptides and by transverse tubular system (T-tubule) depolarization. Peptide A, corresponding to the Thr671-Leu690 region, rapidly changed the ryanodine receptor conformation from a blocked state (low fluorescence of the conformational probe, methyl coumarin acetamide, attached specifically to the ryanodine receptor) to an activated state (high methyl coumarin acetamide fluorescence) as T-tubule depolarization did. Peptide C, corresponding to the Glu724-Pro760 region, blocked both conformational changes induced by peptide A and T-tubule depolarization. Its ability to block peptide A-induced and depolarization-induced activation was considerably impaired by replacing the portion of peptide C corresponding to the Phe725-Pro742 region of the loop with cardiac muscle-type sequence. These results are consistent with the model that depolarization-induced activation of excitation-contraction coupling and blocking/repriming are mediated by the peptide A region and the peptide C region (containing the critical Phe725-Pro742 sequence) of the II-III loop, respectively.  相似文献   

5.
Residues Leu720-Leu764 within the II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) alpha1S subunit represent a critical domain for the orthograde excitation-contraction coupling as well as for retrograde DHPR L-current-enhancing coupling with the ryanodine receptor (RyR1). To better understand the molecular mechanism underlying this bidirectional DHPR-RyR1 signaling interaction, we analyzed the critical domain to the single amino acid level. To this end, constructs based on the highly dissimilar housefly DHPR II-III loop in an otherwise skeletal DHPR as an interaction-inert sequence background were expressed in dysgenic (alpha1S-null) myotubes for simultaneous recordings of depolarization-induced intracellular Ca2+ transients (orthograde coupling) and whole-cell Ca2+ currents (retrograde coupling). In the minimal skeletal II-III loop sequence (Asp734-Asp748 required for full bidirectional coupling, eight amino acids heterologous between skeletal and cardiac DHPR were exchanged for the corresponding cardiac residues. Four of these skeletal-specific residues (Ala739, Phe741, Pro742, and Asp744) turned out to be essential for orthograde and two of them (Ala739 and Phe741) for retrograde coupling, indicating that orthograde coupling does not necessarily correlate with retrograde signaling. Secondary structure predictions of the critical domain show that an alpha-helical (cardiac sequence-type) conformation of a cluster of negatively charged residues (Asp744-Glu751 of alpha1S) corresponds with significantly reduced Ca2+ transients. Conversely, a predicted random coil structure (skeletal sequence-type) seems to be prerequisite for the restoration of skeletal-type excitation-contraction coupling. Thus, not only the primary but also the secondary structure of the critical domain is an essential determinant of the tissue-specific mode of EC coupling.  相似文献   

6.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   

7.
Maurocalcine is a scorpion venom toxin of 33 residues that bears a striking resemblance to the domain A of the dihydropyridine voltage-dependent calcium channel type 1.1 (Cav1.1) subunit. This domain belongs to the II-III loop of Cav1.1, which is implicated in excitation-contraction coupling. Besides the structural homology, maurocalcine also modulates RyR1 channel activity in a manner akin to a synthetic peptide of domain A. Because of these similarities, we hypothesized that maurocalcine and domain A may bind onto an identical region(s) of RyR1. Using a set of RyR1 fragments, we demonstrate that peptide A and maurocalcine bind onto two discrete RyR1 regions: fragments 3 and 7 encompassing residues 1021-1631 and 3201-3661, respectively. The binding onto fragment 7 is of greater importance and was thus further investigated. We found that the amino acid region 3351-3507 of RyR1 (fragment 7.2) is sufficient for these interactions. Proof that peptide A and maurocalcine bind onto the same site is provided by competition experiments in which binding of fragment 7.2 to peptide A is inhibited by preincubation with maurocalcine. Moreover, when expressed in COS-7 cells, RyR1 carrying a deletion of fragment 7 shows a loss of interaction with both peptide A and maurocalcine. At the functional level, this deletion abolishes the maurocalcine induced stimulation of [3H]ryanodine binding onto microsomes of transfected COS-7 cells without affecting the caffeine and ATP responses.  相似文献   

8.
The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor.  相似文献   

9.
Peptides based on the skeletal muscle DHPR II-III loop have been shown to regulate ryanodine receptor channel activity. The N-terminal region of this cytoplasmic loop is predicted to adopt an alpha-helical conformation. We have selected a peptide sequence of 26 residues (Ala(667)-Asp(692)) as the minimum sequence to emulate the helical propensity of the corresponding protein sequence. The interaction of this control peptide with skeletal and cardiac RyR channels in planar lipid bilayers was then assessed and was found to lack isoform specificity. At low concentrations peptide A(667)-D(692) increased RyR open probability, whilst at higher concentrations open probability was reduced. By replacing a region of clustered positive charge with a neutral sequence with the same predisposition to helicity, the inhibitory effect was ablated and activation was enhanced. This novel finding demonstrates that activation does not derive from the presence of positively charged residues adjacent in the primary structure and, although it may be mediated by the alignment of basic residues down one face of an amphipathic helix, not all of these residues are essential.  相似文献   

10.
Inskeletal muscle fibers, the intracellular loop between domains II andIII of the 1-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca2+ releasechannel in the sarcoplasmic reticulum. We examined the effects ofsynthetic peptide segments of this loop on Ca2+ release inmechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg2+ concentration ([Mg2+]; 1 mM), a20-residue skeletal muscle DHPR peptide[AS(20);Thr671-Leu690; 30 µM], shown previously toinduce Ca2+ release in a triad preparation, caused onlysmall spontaneous force responses in ~40% of fibers, although itpotentiated responses to depolarization and caffeine in all fibers. TheCOOH-terminal half of AS(20)[AS(10)] induced much larger spontaneousresponses but also caused substantial inhibition of Ca2+release to both depolarization and caffeine. Both peptides induced orpotentiated Ca2+ release even when the voltage sensors wereinactivated, indicating direct action on the Ca2+ releasechannels. The corresponding 20-residue cardiac DHPR peptide [AC(20);Thr793-Ala812] was ineffective, but itsCOOH-terminal half [AC(10)] had effects similar to AS(20). In the presence of lower[Mg2+] (0.2 mM), exposure to eitherAS(20) or AC(10) (30 µM) induced substantial Ca2+ release. PeptideCS (100 µM), a loop segment reported to inhibit Ca2+ release in triads, caused partial inhibition ofdepolarization-induced Ca2+ release. In toad fibers, eachof the A peptides had effects similar to or greater than those in ratfibers. These findings suggest that the A and C regions of the skeletalDHPR II-III loop may have important roles in vivo.

  相似文献   

11.
A peptide corresponding to residues 681-690 of the II-III loop of the skeletal muscle dihydropyridine receptor alpha(1) subunit (DHPR, alpha(1S)) has been reported to activate the skeletal muscle ryanodine receptor (RyR1) in vitro. Within this region of alpha(1S), a cluster of basic residues, Arg(681)-Lys(685), was previously reported to be indispensable for the activation of RyR1 in microsomal preparations and lipid bilayers. We have used an intact alpha(1S) subunit with scrambled sequence in this region of the II-III loop (alpha(1S)-scr) to test the importance of residues 681-690 and the basic motif for skeletal-type excitation-contraction (EC) coupling and retrograde signaling in vivo. When expressed in dysgenic myotubes (which lack endogenous alpha(1S)), alpha(1S)-scr restored calcium currents that were indistinguishable, in current density and voltage dependence, from those restored by wild-type alpha(1S). The scrambled DHPR also rescued skeletal-type EC coupling, as indicated by electrically evoked contractions in the presence of 0.5 mm Cd(2+) and 0.1 mm La(3+). Furthermore, the release of intracellular Ca(2+), as assayed by the indicator dye, Fluo-3, had similar kinetics and voltage dependence for alpha(1S) and alpha(1S)-scr. These data suggest that residues 681-690 of the alpha(1S) II-III loop are not essential in muscle cells for normal functioning of the DHPR, including skeletal-type EC coupling and retrograde signaling.  相似文献   

12.
Excitation-contraction coupling in skeletal muscle is believed to be triggered by direct protein-protein interactions between the sarcolemmal dihydropyridine-sensitive Ca2+ channel and the Ca2+ release channel/ryanodine receptor (RyR) of sarcoplasmic reticulum. A 138-amino acid cytoplasmic loop between repeats II and III of the alpha1 subunit of the skeletal dihydropyridine receptor (the II-III loop) interacts with a region of the RyR to elicit Ca2+ release. In addition, small segments (10-20 amino acid residues) of the II-III loop retain the capacity to activate Ca2+ release. Imperatoxin A, a 33-amino acid peptide from the scorpion Pandinus imperator, binds directly to the RyR and displays structural and functional homology with an activating segment of the II-III loop (Glu666-Leu690). Mutations in a structural motif composed of a cluster of basic amino acids followed by Ser or Thr dramatically reduce or completely abolish the capacity of the peptides to activate RyRs. Thus, the Imperatoxin A-RyR interaction mimics critical molecular characteristics of the II-III loop-RyR interaction and may be a useful tool to elucidate the molecular mechanism that couples membrane depolarization to sarcoplasmic reticulum Ca2+ release in vivo.  相似文献   

13.
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.  相似文献   

14.
15.
The effect of polyamines on ryanodine binding activity of junctional sarcoplasmic reticulum membranes is described. Spermine stimulated the binding of ryanodine to its receptor up to 5-fold, with half-maximal stimulation obtained with 3.5 mM. Spermidine and putrescine also stimulated ryanodine binding, but they were about 12-fold less potent. The degree of stimulation is dependent on the NaCl concentration present in the assay medium. Spermine has no effect on the Ca(2+)-dependency of ryanodine binding but it increases the ryanodine binding affinity (Kd) by about 5.6-fold. Both the rate of ryanodine association with, and dissociation from, its binding site were affected by spermine. Spermine also stimulates the photoaffinity labelling by 3-O-(4-benzoyl)benzoyl[alpha-32P]ATP ([alpha-32P]BzATP) of the ryanodine receptor, increasing the BzATP binding affinity. We suggest that the stimulatory effect of spermine on ryanodine binding is due to its specific interaction with the ryanodine receptor. This spermine interaction enabled us to develop a new, one-step, fast and with high yield method for the purification of ryanodine receptor (Shoshan-Barmatz, V. and Zarka, A. (1992) Biochem. J. 284, in press).  相似文献   

16.
To evaluate low-intensity exercise training induced changes in the expression of dihydropyridine (DHP) and ryanodine (Ry) receptors both mRNA and protein levels were determined by quantitative RT-PCR and immunoblot analysis from gastrocnemius (GAS) and rectus femoris (RF) muscles of mice subjected to a 15-week aerobic exercise program. The level of muscular work was assayed by changes in myosin heavy chain (MHC) content, myoglobin (Mb) expression and muscle size. The mRNA expression and optical density of DHP receptor increased significantly in GAS by 66.8 and 39.5%, respectively. The expression of Ry receptor, on the other hand, was not up-regulated. In RF, there was a significant increase of 38.4% in the mRNA expression of DHP receptor, although the protein level remained the same. No changes in Ry receptor expression was observed. The training resulted in a 1.58% increase in the amount of MHC IIa and a 2.34% decrease in that of IIb and IId in GAS. A significant 8.3% increase in the Mb content was observed. In RF, no significant changes in MHC or in Mb content were noted. Our results show that an evident increase in the mRNA and protein expression of DHP receptor was induced in GAS even by a relatively low-intensity exercise. Surprisingly, contrast to DHP receptor expression, no changes in Ry receptor mRNA, or protein levels were found, indicating more abundant demand for DHP receptor after increased muscle activity.  相似文献   

17.
Excitation‐contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca2+ channels, dihydropyridine receptor (DHPR; voltage‐dependent L‐type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous. Recently, it has been proposed that one or more supporting proteins are in fact required for communication of DHPR with RyR1 during the ECC process. One such protein that is increasingly believed to play a role in this interaction is the SH3 and cysteine‐rich domain‐containing protein 3 (STAC3), which has been proposed to bind a cytosolic portion of the DHPR α1S subunit known as the II–III loop. In this work, we present direct evidence for an interaction between a small peptide sequence of the II–III loop and several residues within the SH3 domains of STAC3 as well as the neuronal isoform STAC2. Differences in this interaction between STAC3 and STAC2 suggest that STAC3 possesses distinct biophysical features that are potentially important for its physiological interactions with the II–III loop. Therefore, this work demonstrates an isoform‐specific interaction between STAC3 and the II–III loop of DHPR and provides novel insights into a putative molecular mechanism behind this association in the skeletal muscle ECC process.  相似文献   

18.
Understanding which cytosolic domains of the dihydropyridine receptor participate in excitation-contraction (EC) coupling is critical to validate current structural models. Here we quantified the contribution to skeletal-type EC coupling of the alpha1S (CaV1.1) II-III loop when alone or in combination with the rest of the cytosolic domains of alpha1S. Chimeras consisting of alpha1C (CaV1.2) with alpha1S substitutions at each of the interrepeat loops (I-II, II-III, and III-IV loops) and N- and C-terminal domains were evaluated in dysgenic (alpha1S-null) myotubes for phenotypic expression of skeletal-type EC coupling. Myotubes were voltage-clamped, and Ca2+ transients were measured by confocal line-scan imaging of fluo-4 fluorescence. In agreement with previous results, the alpha1C/alpha1S II-III loop chimera, but none of the other single-loop chimeras, recovered a sigmoidal fluorescence-voltage curve indicative of skeletal-type EC coupling. To quantify Ca2+ transients in the absence of inward Ca2+ current, but without changing the external solution, a mutation, E736K, was introduced into the P-loop of repeat II of alpha1C. The Ca2+ transients expressed by the alpha1C(E736K)/alpha1S II-III loop chimera were approximately 70% smaller than those expressed by the Ca2+-conducting alpha1C/alpha1S II-III variant. The low skeletal-type EC coupling expressed by the alpha1C/alpha1S II-III loop chimera was confirmed in the Ca2+-conducting alpha1C/alpha1S II-III loop variant using Cd2+ (10(-4) M) as the Ca2+ current blocker. In contrast to the behavior of the II-III loop chimera, Ca2+ transients expressed by an alpha1C/alpha1S chimera carrying all tested skeletal alpha1S domains (all alpha1S interrepeat loops, N- and C-terminus) were similar in shape and amplitude to wild-type alpha1S, and did not change in the presence of the E736K mutation or in the presence of 10(-4) M Cd2+. Controls indicated that similar dihydropyridine receptor charge movements were expressed by the non-Ca2+ permeant alpha1S(E1014K) variant, the alpha1C(E736K)/alpha1S II-III loop chimera, and the alpha1C(E736K)/alpha1S chimera carrying all tested alpha1S domains. The data indicate that the functional recovery produced by the alpha1S II-III loop is incomplete and that multiple cytosolic domains of alpha1S are necessary for a quantitative recovery of the EC-coupling phenotype of skeletal myotubes. Thus, despite the importance of the II-III loop there may be other critical determinants in alpha1S that influence the efficiency of EC coupling.  相似文献   

19.
The dihydropyridine receptors (DHPR) are L-type voltage-gated calcium channels that regulate the flux of calcium ions across the cell membrane. Here we present the three-dimensional (3D) structure at approximately 27A resolution of purified skeletal muscle DHPR, as determined by electron microscopy and single particle analysis. Here both biochemical and 3D structural data indicate that DHPR is dimeric. DHPR dimers are composed of two arch-shaped monomers approximately 210A across and approximately 75A thick, that interact very tightly at each end of the arch. The roughly toroidal structure of the two monomers encloses a cylindrical space of approximately 80A diameter, which is then closed on each side by two dome-shaped protein densities reaching over from each monomer arch. The dome-shaped domains have a length of approximately 80-90A and a maximum height of approximately 45A. Small orifices punctuate their exterior surface. The 3D structure disclosed here may have important implications for the understanding of DHPR Ca(2+) channel function. We also propose a model for its in vivo interactions with the calcium release channel at the junctional sarcoplasmic recticulum.  相似文献   

20.
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号