首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the protein-only hypothesis of prion propagation, prions are composed principally of PrP(Sc), an abnormal conformational isoform of the prion protein, which, like its normal cellular precursor (PrP(C)), has a GPI (glycosylphosphatidylinositol) anchor at the C-terminus. To date, elucidating the role of this anchor on the infectivity of prion preparations has not been possible because of the resistance of PrP(Sc) to the activity of PI-PLC (phosphoinositide-specific phospholipase C), an enzyme which removes the GPI moiety from PrP(C). Removal of the GPI anchor from PrP(Sc) requires denaturation before treatment with PI-PLC, a process that also abolishes infectivity. To circumvent this problem, we have removed the GPI anchor from PrP(Sc) in RML (Rocky Mountain Laboratory)-prion-infected murine brain homogenate using the aspartic endoprotease cathepsin D. This enzyme eliminates a short sequence at the C-terminal end of PrP to which the GPI anchor is attached. We found that this modification has no effect (i) on an in vitro amplification model of PrP(Sc), (ii) on the prion titre as determined by a highly sensitive N2a-cell based bioassay, or (iii) in a mouse bioassay. These results show that the GPI anchor has little or no role in either the propagation of PrP(Sc) or on prion infectivity.  相似文献   

2.
The conversion of cellular prion protein (PrP(C)) to the disease-associated misfolded isoform (PrP(Sc)) is an essential process for prion replication. This structural conversion can be modelled in protein misfolding cyclic amplification (PMCA) reactions in which PrP(Sc) is inoculated into healthy hamster brain homogenate, followed by cycles of incubation and sonication. In serial transmission PMCA experiments it has recently been shown that the protease-resistant PrP obtained in vitro (PrPres) is generated by an autocatalytic mechanism. Here, serial transmission PMCA experiments were compared with serial transmission reactions lacking the sonication steps. We achieved approximately 200,000-fold PrPres amplification by PMCA. In contrast, although initial amplification was comparable to PMCA reactions, PrPres levels quickly dropped below detection limit when samples were not subjected to ultrasound. These results indicate that aggregate breakage is essential for efficient autocatalytic amplification of misfolded prion protein and suggest an important role of aggregate breakage in prion propagation.  相似文献   

3.
The pathogenic isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)) is considered to be an infectious agent of transmissible spongiform encephalopathy (TSE). The detailed mechanism by which the PrP(Sc) seed catalyzes the structural conversion of endogenous PrP(C) into nascent PrP(Sc) in vivo still remains unclear. Recent studies reveal that bacterially derived recombinant PrP (recPrP) can be used as a substrate for the in vitro generation of protease-resistant recPrP (recPrP(res)) by protein-misfolding cyclic amplification (PMCA). These findings imply that PrP modifications with a glycosylphosphatidylinositol (GPI) anchor and asparagine (N)-linked glycosylation are not necessary for the amplification and generation of recPrP(Sc) by PMCA. However, the biological properties of PrP(Sc) obtained by in vivo transmission of recPrP(res) are unique or different from those of PrP(Sc) used as the seed, indicating that the mechanisms mediated by these posttranslational modifications possibly participate in reproductive propagation of PrP(Sc). In the present study, using baculovirus-derived recombinant PrP (Bac-PrP), we demonstrated that Bac-PrP is useful as a PrP(C) substrate for amplification of the mouse scrapie prion strain Chandler, and PrP(Sc) that accumulated in mice inoculated with Bac-PrP(res) had biochemical and pathological properties very similar to those of the PrP(Sc) seed. Since Bac-PrP modified with a GPI anchor and brain homogenate of Prnp knockout mice were both required to generate Bac-PrP(res), the interaction of GPI-anchored PrP with factors in brain homogenates is essential for reproductive propagation of PrP(Sc). Therefore, the Bac-PMCA technique appears to be extremely beneficial for the comprehensive understanding of the GPI anchor-mediated stimulation pathway.  相似文献   

4.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

5.
Since variant Creutzfeldt-Jakob disease (vCJD) has been suspected to be attributable to the infectious agents associated with bovine spongiform encephalopathy (BSE), it is important to prevent the transmission of pathogenic forms of prion protein (PrP(Sc)) through contaminated feeding materials such as meat and bone meal (MBM). Here, we demonstrate that the Maillard reaction employing a formulation of glucose in combination with sodium hydrogen carbonates effectively reduced the infectivity (approximately 5.9-log reduction) of a scrapie-infected hamster brain homogenate. In addition to a bioassay, a protein misfolding cyclic amplification (PMCA) technique, in which PrP(Sc) can be amplified in vitro, was used as a rapid test for assessing PrP(Sc) inactivation. The PMCA analysis also indicated that the PrP(Sc) level in the infected material significantly decreased following the Maillard reaction. Therefore, the Maillard reaction can be employed for the decontamination of large amounts of byproducts such as MBM.  相似文献   

6.
The development of technologies for the in vitro amplification of abnormal conformations of prion protein (PrP(Sc)) has generated the potential for sensitive detection of prions. Here we developed a new PrP(Sc) amplification assay, called real-time quaking-induced conversion (RT-QUIC), which allows the detection of ≥1 fg of PrP(Sc) in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate. Moreover, we assessed the technique first in a series of Japanese subjects and then in a blind study of 30 cerebrospinal fluid specimens from Australia, which achieved greater than 80% sensitivity and 100% specificity. These findings indicate the promising enhanced diagnostic capacity of RT-QUIC in the antemortem evaluation of suspected CJD.  相似文献   

7.
A fundamental event in the pathogenesis of prion disease is the conversion of PrP(C), a normal glycophosphatidyl-anchored glycoprotein, into an infectious isoform designated PrP(Sc). In a modified version of the protein misfolding cyclic amplification (PMCA) technique [Saborio et al. (2001) Nature 411, 810-813], protease-resistant PrP(Sc)-like molecules (PrPres) can be amplified in vitro in a species- and strain-specific manner from crude brain homogenates, providing a biochemical model of the prion conversion reaction [Lucassen et al. (2003) Biochemistry 42, 4127-4135]. In this study, we investigated the ability of enriched membrane subsets and detergent-solubilized membrane preparations to support PrPres amplification. Membrane fractionation experiments showed that purified synaptic plasma membrane preparations enriched in PrP(C) but largely depleted of late endosomal and lysosomal markers were sufficient to support PrPres amplification. Detergent solubilization experiments showed that a small group of select detergents could be used to produce soluble preparations that contain PrP(C) and fully support PrPres amplification. The stability of PrPres amplification ability in detergent-solubilized supernatants was dependent on detergent concentration. These results lead to the surprising conclusion that membrane attachment is not required for PrP(C) to convert efficiently into PrPres in vitro and also indicate that biochemical purification of PrPres amplification factors from brain homogenates is a feasible approach.  相似文献   

8.
In the presence of a low concentration of denaturants or detergents, acidic pH triggers a conformational transition of alpha-helices into beta-sheets in recombinant prion protein (PrP), likely mimicking some aspects of the transformation of host-encoded normal cellular PrP (PrP(C)) into its pathogenic isoform (PrP(Sc)). Here we observed the effects of acidic pH and guanidine hydrochloride (GdnHCl) on the physicochemical and structural properties of PrP(C) derived from normal human brain and determined the ability of the acid/GdnHCl-treated PrP to form a proteinase K (PK)-resistant species in the absence and presence of PrP(Sc) template. After treatment with 1.5 m GdnHCl at pH 3.5, PrP(C) from normal brain homogenates was converted into a detergent-insoluble form similar to PrP(Sc). Unlike PrP(Sc), however, the treated brain PrP(C) was protease-sensitive and retained epitope accessibility to monoclonal antibodies 3F4 and 6H4. Brain PrP(C) treated with acidic pH/GdnHCl acquired partial PK resistance upon further treatment with low concentrations of sodium dodecyl sulfate (SDS). Formation of this PrP(Sc)-like isoform was greatly enhanced by incubation with trace quantities of PrP(Sc) from Creutzfeldt-Jakob disease brain. Acid/GdnHCl-treated brain PrP may constitute a "recruitable intermediate" in PrP(Sc) formation. Further structural rearrangement seems essential for this species to acquire PK resistance, which can be promoted by the presence of a PrP(Sc) template.  相似文献   

9.
Prions, infectious agents causing TSEs, are composed primarily of the pathogenic form (PrP(Sc)) of the PrP(C). The susceptibility of sheep to scrapie is determined by polymorphisms in the coding region of the PRNP, mainly at codons 136, 154, and 171. The efficiency of in vitro amplification of sheep PrP(Sc) seems to be linked also to the PrP genotype. PrP(Sc) derived from sheep with V(136)R(154)Q(171)-associated genotypes can be amplified efficiently by PMCA in the presence of additional polyanion such as poly A, but there are no reports that cite ultrasensitive detection of PrP(Sc) derived from sheep of other PrP genotypes. We report here that sheep PrP(Sc) derived from ARQ and AHQ homozygotes was amplified efficiently by serial PMCA using mouse brain homogenate as PrP(C) substrate. ARQ/ARQ PrP(Sc) was detected in infected brain homogenates diluted up to 10(-10) after five rounds of amplification, and AHQ/AHQ PrP(Sc) was detected in samples diluted up to 10(-8) after four rounds of amplification. On the other hand, amplification of PrP(Sc) from VRQ/ARQ sheep seemed to be less efficient under the experimental conditions used. The interspecies PMCA developed in this study may be useful in the detailed analysis of PrP(Sc) distribution in classical scrapie-infected ARQ and AHQ homozygote sheep.  相似文献   

10.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

11.
The role of rafts in the fibrillization and aggregation of prions   总被引:4,自引:0,他引:4  
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrP(C)) to the disease-specific form (PrP(Sc)). The transition from PrP(C) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here several lines of evidence implicating membranes in the conversion of PrP are reviewed with a particular emphasis on the role of lipid rafts in the conformational transition of prion proteins. New correlations between in vitro biophysical studies and findings from cell biology work on the role of rafts in prion conversion are highlighted and a mechanism for the role of rafts in prion conversion is proposed.  相似文献   

12.
In prion-related encephalopathies, the cellular prion protein (PrP(C)) undergoes a change in conformation to become the scrapie prion protein (PrP(Sc)) which forms infectious deposits in the brain. Conceivably, the conformational transition of PrP(C) to PrP(Sc) might be linked with posttranslational alterations in the covalent structure of a fraction of the PrP molecules. We tested a synthetic peptide corresponding to residues 106-126 of human PrP for the occurrence of spontaneous chemical modifications. The only asparagine residue, Asn108, was deamidated to aspartic acid and isoaspartic acid with a half-life of about 12 days. The same posttranslational modifications were found in recombinant murine full-length protein. On aging, 0.8 mol of isoaspartyl residue per mole of protein was detected by the protein-l-isoaspartyl methyltransferase assay (t(1/2) approximately 30 days). Mass spectrometry and Edman degradation of Lys-C fragments identified Asn108 in the amino-terminal flexible part of the protein to be partially converted to aspartic acid and isoaspartic acid. A second modification was the partial isomerization of Asp226' which is only present in rodents.  相似文献   

13.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

14.
The protein misfolding cyclic amplification (PMCA) assay allows for detection of prion protein misfolding activity in tissues and fluids from sheep with scrapie where it was previously undetected by conventional western blot and immunohistochemistry assays. Studies of goats with scrapie have yet to take advantage of PMCA, which could aid in discerning the risk of transmission between goats and goats to sheep. The aim of the current study was to adapt PMCA for evaluation of scrapie derived from goats. Diluted brain homogenate from scrapie-infected goats (i.e., the scrapie seed, PrP(Sc)) was subjected to PMCA using normal brain homogenate from ovinized transgenic mice (tg338) as the source of normal cellular prion protein (the substrate, PrP(C)). The assay end-point was detection of the proteinase K-resistant misfolded prion protein core (PrP(res)) by western blot. Protein misfolding activity was consistently observed in caprine brain homogenate diluted 10,000-fold after 5 PMCA rounds. Epitope mapping by western blot analyses demonstrated that PrP(res) post-PMCA was readily detected with an N-terminus anti-PrP monoclonal antibody (P4), similar to scrapie inoculum from goats. This was in contrast to limited detection of PrP(res) with P4 following mouse bioassay. The inverse was observed with a monoclonal antibody to the C-terminus (F99/97.6.1). Thus, brain homogenate prepared from uninoculated tg338 served as an appropriate substrate for serial PMCA of PrP(Sc) derived from goats. These observations suggest that concurrent PMCA and bioassay with tg338 could improve characterization of goat derived scrapie.  相似文献   

15.
The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrP(Sc). The amount of scrapie infectivity or PrP(Sc) in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrP(Sc) in myotubes, and the C-terminal C2 polypeptide fragment of PrP(Sc) was found based on deglycosylation and PrP(Sc)-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.  相似文献   

16.
In transmissible spongiform encephalopathies, the cellular prion protein (PrP(C)) undergoes a conformational change from a prevailing alpha-helical structure to a beta-sheet-rich, protease-resistant isoform, termed PrP(Sc). PrP(C) has two characteristics: a high affinity for Cu(2+) and a strong pH-dependent conformation. Lines of evidence indicate that PrP(Sc) conformation is dependent on copper and that acidic conditions facilitate the conversion of PrP(C) --> PrP(Sc). In each species, PrP(Sc) exists in multiple conformations, which are associated with different prion strains. In sporadic Creutzfeldt-Jakob disease (sCJD), different biochemical types of PrP(Sc) have been identified according to the size of the protease-resistant fragments, patterns of glycosylation, and the metal-ion occupancy. Based on the site of cleavage produced by proteinase K, we investigated the conformational stability of PrP(Sc) under acidic, neutral, and basic conditions in 42 sCJD subjects. Our study shows that only one type of sCJD PrP(Sc), associated with the classical form, shows a pH-dependent conformation, whereas two other biochemical PrP(Sc) types, detected in distinct sCJD phenotypes, are unaffected by pH variations. This novel approach demonstrates the presence of three types of PrP(Sc) in sCJD.  相似文献   

17.
Cellular PrP is actively cycled between the cell surface and the endosomal pathway. The exact site and mechanism of conversion from PrP(C) to PrP(Sc) remain unknown. We have previously used recombinant antibodies containing grafts of PrP sequence to identify three regions of PrP(C) (aa23-27, 98-110, and 136-158) that react with PrP(Sc) at neutral pH. To determine if any regions of PrP(C) react with PrP(Sc) at an acidic pH similar to that of an endosomal compartment, we tested our panel of grafted antibodies for the ability to precipitate PrP(Sc) in a range of pH conditions. At pH near or lower than 6, PrP-grafted antibodies representing the octapeptide repeat react strongly with PrP(Sc) but not PrP(C). Modified grafts in which the histidines of the octarepeat were replaced with alanines did not react with PrP(Sc). PrP(Sc) precipitated by the octapeptide at pH 5.7 was able to seed conversion of normal PrP to PrP(Sc) in vitro. However, modified PrP containing histidine to alanine substitutions within the octapeptide repeats was still converted to PrP(Sc) in N2a cells. These results suggest that once PrP has entered the endosomal pathway, the acidic environment facilitates the binding of PrP(Sc) to the octarepeat of PrP(C) by the change in charge of the histidines within the octarepeat.  相似文献   

18.
Little is currently known about the biochemical mechanism by which induced prion protein (PrP) conformational change occurs during mammalian prion propagation. In this study, we describe the reconstitution of PrPres amplification in vitro using partially purified and synthetic components. Overnight incubation of purified PrP27-30 and PrPC molecules at a molar ratio of 1:250 yielded approximately 2-fold baseline PrPres amplification. Addition of various polyanionic molecules increased the level of PrPres amplification to approximately 10-fold overall. Polyanionic compounds that stimulated purified PrPres amplification to varying degrees included synthetic, homopolymeric nucleic acids such as poly(A) and poly(dT), as well as non-nucleic acid polyanions, such as heparan sulfate proteoglycan. Size fractionation experiments showed that synthetic poly(A) polymers must be >0.2 kb in length to stimulate purified PrPres amplification. Thus, one possible set of minimal components for efficient conversion of PrP molecules in vitro may be surprisingly simple, consisting of PrP27-30, PrPC, and a stimulatory polyanionic compound.  相似文献   

19.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

20.
In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrP(Sc) in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrP(Sc) in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrP(Sc) in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrP(Sc) was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrP(Sc) to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号